3.人口爆炸

M:近来,我们听到很多关于地球上人口增长多么快的议论了。

M:妇女反对控制生育同盟主席,宁尼夫人不同意这种说法,她认为世界上的人口正在减少,很快地,每个人就会有更多的空间,比他们所需要的还要多。

M:她的观点是——

宁尼夫人:每个人生来就有父母双亲。这父母二人中每一个又有一父一母。这就有四个祖父母辈的人。每个祖父或祖母又有父母二人,所以就有8个曾祖父母。你每往上数一辈,祖宗的数目就增加一倍。

M:如果你回溯20代到中世纪,你就会有1048576个祖宗!把这个应用到今天每个活着的人身上,那么中世纪的人口就会是现在人口的一百多万倍!宁尼夫人肯定不对,可是她的推理中那儿出了错?

要考虑这个问题最好是先问问,在这个悖论和“六个席位之谜”之间有什么联系没有。

如果下面两个假定成立的话,宁尼夫人的说法就是对的:

1.在各个活着的人的祖辈宗谱树上,每一位祖先只出现一次。

2.同一个人只出现在一个祖辈宗谱树上,不能多于一次。

在所有各种情形中这两个假设没有一个是正确的。如果一对夫妇有五个孩子,这五个孩子又每人有五个孩子,那么,原来那对夫妇就会是25个独立的祖辈宗谱树上的祖父母。再者,如果你在任意一个宗谱树上回溯很多代,就会有某些远亲联姻的夫妇。

宁尼夫人论点的谬误就在于,它既没有考虑到一棵宗谱树上远亲联姻的夫妇,又没考虑到构成每个活人的宗谱树上的人群的大量“交易”。在“六个席位之谜”中只有一个人算了两次,可是在宁尼夫人关于人口回溯内爆中就有成千上万人计算了成千上万次!

一个班级的学生也许会对加倍数列的各项增加之快感到吃惊。如果有某人同意,今天给另一人一元,明天两元,后天4元,如此下去。很难相信在第20天他就得给那个人一百多万元!这一惊人的结果往往用来介绍几何级数(见哈罗尔德·雅可比的《数学—人类的魄力》第二节)。

在加倍数列中有没有什么简便方法来计算头20项的和?有!办法是末项增加一倍再减1。第20项是1048576,故头20项的总和为:

2*1048576-1=2097151

这个方法可用来求加倍数列中任意前若干项的部分和。有些学生应当会证明这一结果。