
“When you strive to comprehend your code, you create better
work and become better at what you do. The code isn’t just

your job anymore, it’s your craft. This is why I love Up & Going.”
—JENN LUKAS, Frontend consultant

KYLE SIMPSON

UP &I

 GOING
YOU

 DON
’T KN

OW
 JAVASCRIPT

KYLE SIM
PSON

U
P &

 G
O

ING

JAVA SCRIPT Twitter: @oreillymedia
facebook.com/oreilly

It’s easy to learn parts of JavaScript, but much harder to learn it completely—or even
sufficiently—whether you’re new to the language or have used it for years. With the “You Don’t
Know JS” book series, you’ll get a more complete understanding of JavaScript, including trickier
parts of the language that many experienced JavaScript programmers simply avoid.

The series’ first book, Up & Going, provides the necessary background for those of you with
limited programming experience. By learning the basic building blocks of programming, as
well as JavaScript’s core mechanisms, you’ll be prepared to dive into the other, more in-depth
books in the series—and be well on your way toward true JavaScript.

With this book you will:

■ Learn the essential programming building blocks, including operators, types,
variables, conditionals, loops, and functions

■ Become familiar with JavaScript’s core mechanisms, such as values, function
closures, this, and prototypes

■ Get an overview of other books in the series—and learn why it’s important to
understand all parts of JavaScript

Kyle Simpson is an Open Web evangelist from Austin, TX, who’s passionate about all things JavaScript.
He’s an author, workshop trainer, tech speaker, and OSS contributor/leader.

oreilly.com
YouDontKnowJS.com

UP & I GOING

The YOU DON’T KNOW JS series includes:

■ Up & Going
■ Scope & Closures
■ this & Object Prototypes
■ Types & Grammar
■ Async & Performance
■ ES6 & Beyond

ISBN: 978-1-491-92446-4

US $4.99 CAN $5.99

JAVASCRIPT

“When you strive to comprehend your code, you create better
work and become better at what you do. The code isn’t just

your job anymore, it’s your craft. This is why I love Up & Going.”
—JENN LUKAS, Frontend consultant

KYLE SIMPSON

UP &I

 GOING

YOU
 DON

’T KN
OW

 JAVASCRIPT
KYLE SIM

PSON
U

P &
 G

O
ING

JAVA SCRIPT Twitter: @oreillymedia
facebook.com/oreilly

It’s easy to learn parts of JavaScript, but much harder to learn it completely—or even
sufficiently—whether you’re new to the language or have used it for years. With the “You Don’t
Know JS” book series, you’ll get a more complete understanding of JavaScript, including trickier
parts of the language that many experienced JavaScript programmers simply avoid.

The series’ first book, Up & Going, provides the necessary background for those of you with
limited programming experience. By learning the basic building blocks of programming, as
well as JavaScript’s core mechanisms, you’ll be prepared to dive into the other, more in-depth
books in the series—and be well on your way toward true JavaScript.

With this book you will:

■ Learn the essential programming building blocks, including operators, types,
variables, conditionals, loops, and functions

■ Become familiar with JavaScript’s core mechanisms, such as values, function
closures, this, and prototypes

■ Get an overview of other books in the series—and learn why it’s important to
understand all parts of JavaScript

Kyle Simpson is an Open Web Evangelist from Austin, TX, who’s passionate about all things JavaScript.
He’s an author, workshop trainer, tech speaker, and OSS contributor/leader.

oreilly.com
YouDontKnowJS.com

UP & I GOING

The YOU DON’T KNOW JS series includes:

■ Up & Going
■ Scope & Closures
■ this & Object Prototypes
■ Types & Grammar
■ Async & Performance
■ ES6 & Beyond

ISBN: 978-1-491-92446-4

US $4.99 CAN $5.99

JAVASCRIPT

Kyle Simpson

Up & Going

978-1-491-92446-4

[LSI]

Up & Going
by Kyle Simpson

Copyright © 2015 Getify Solutions. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://safaribooksonline.com). For
more information, contact our corporate/institutional sales department:
800-998-9938 or corporate@oreilly.com.

Editors: Simon St.Laurent and Brian
MacDonald
Production Editor: Kristen Brown
Copyeditor: Jasmine Kwityn

Proofreader: Amanda Kersey
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

April 2015: First Edition

Revision History for the First Edition
2015-03-17: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491924464 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. You Don’t Know
JS: Up & Going, the cover image, and related trade dress are trademarks of O’Reilly
Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the
information and instructions contained in this work are accurate, the publisher and
the author disclaim all responsibility for errors or omissions, including without limi‐
tation responsibility for damages resulting from the use of or reliance on this work.
Use of the information and instructions contained in this work is at your own risk. If
any code samples or other technology this work contains or describes is subject to
open source licenses or the intellectual property rights of others, it is your responsi‐
bility to ensure that your use thereof complies with such licenses and/or rights.

http://safaribooksonline.com
http://oreilly.com/catalog/errata.csp?isbn=9781491924464

Table of Contents

Foreword. v

Preface. vii

1. Into Programming. 1
Code 2
Expressions 3
Try It Yourself 4
Operators 8
Values & Types 10
Code Comments 12
Variables 14
Blocks 17
Conditionals 18
Loops 20
Functions 22
Practice 26
Review 28

2. Into JavaScript. 29
Values & Types 30
Variables 40
Conditionals 43
Strict Mode 45
Functions as Values 47
this Identifier 52
Prototypes 53

iii

Old & New 55
Non-JavaScript 58
Review 59

3. Into YDKJS. 61
Scope & Closures 61
this & Object Prototypes 62
Types & Grammar 63
Async & Performance 64
ES6 & Beyond 65
Review 67

A. Acknowledgments. 69

iv | Table of Contents

Foreword

What was the last new thing you learned?

Perhaps it was a foreign language, like Italian or German. Or maybe
it was a graphics editor, like Photoshop. Or a cooking technique or
woodworking or an exercise routine. I want you to remember that
feeling when you finally got it: the lightbulb moment. When things
went from blurry to crystal clear, as you mastered the table saw or
understood the difference between masculine and feminine nouns
in French. How did it feel? Pretty amazing, right?

Now I want you to travel back a little bit further in your memory to
right before you learned your new skill. How did that feel? Probably
slightly intimidating and maybe a little bit frustrating, right? At one
point, we all did not know the things that we know now, and that’s
totally OK; we all start somewhere. Learning new material is an
exciting adventure, especially if you are looking to learn the subject
efficiently.

I teach a lot of beginner coding classes. The students who take my
classes have often tried teaching themselves subjects like HTML or
JavaScript by reading blog posts or copying and pasting code, but
they haven’t been able to truly master the material that will allow
them to code their desired outcome. And because they don’t truly
grasp the ins and outs of certain coding topics, they can’t write pow‐
erful code or debug their own work because they don’t really under‐
stand what is happening.

I always believe in teaching my classes the proper way, meaning I
teach web standards, semantic markup, well-commented code, and
other best practices. I cover the subject in a thorough manner to
explain the hows and whys, without just tossing out code to copy

v

and paste. When you strive to comprehend your code, you create
better work and become better at what you do. The code isn’t just
your job anymore, it’s your craft. This is why I love Up & Going. Kyle
takes us on a deep dive through syntax and terminology to give a
great introduction to JavaScript without cutting corners. This book
doesn’t skim over the surface but really allows us to genuinely
understand the concepts.

Because it’s not enough to be able to duplicate jQuery snippets into
your website, the same way it’s not enough to learn how to open,
close, and save a document in Photoshop. Sure, once I learned a few
basics about the program, I could create and share a design I made.
But without legitimately knowing the tools and what is behind
them, how can I define a grid, or craft a legible type system, or opti‐
mize graphics for web use. The same goes for JavaScript. Without
knowing how loops work, or how to define variables, or what scope
is, we won’t be writing the best code we can. We don’t want to settle
for anything less—this is, after all, our craft.

The more you are exposed to JavaScript, the clearer it becomes.
Words like closures, objects, and methods might seem out of reach
to you now, but this book will help those terms come into clarity. I
want you to keep those two feelings of before and after you learn
something in mind as you begin this book. It might seem daunting,
but you’ve picked up this book because you are starting an awesome
journey to hone your knowledge. Up & Going is the start of our path
to understanding programming. Enjoy the lightbulb moments!

—Jenn Lukas (http://jennlukas.com, @jennlukas),
Frontend consultant

vi | Foreword

http://jennlukas.com

Preface

I’m sure you noticed, but “JS” in the series title is not an abbrevia‐
tion for words used to curse about JavaScript, though cursing at the
language’s quirks is something we can probably all identify with!

From the earliest days of the Web, JavaScript has been a founda‐
tional technology that drives interactive experience around the con‐
tent we consume. While flickering mouse trails and annoying pop-
up prompts may be where JavaScript started, nearly two decades
later, the technology and capability of JavaScript has grown many
orders of magnitude, and few doubt its importance at the heart of
the world’s most widely available software platform: the Web.

But as a language, it has perpetually been a target for a great deal of
criticism, owing partly to its heritage but even more to its design
philosophy. Even the name evokes, as Brendan Eich once put it,
“dumb kid brother” status next to its more mature older brother,
Java. But the name is merely an accident of politics and marketing.
The two languages are vastly different in many important ways.
“JavaScript” is as related to “Java” as “Carnival” is to “Car.”

Because JavaScript borrows concepts and syntax idioms from sev‐
eral languages, including proud C-style procedural roots as well as
subtle, less obvious Scheme/Lisp-style functional roots, it is exceed‐
ingly approachable to a broad audience of developers, even those
with little to no programming experience. The “Hello World” of
JavaScript is so simple that the language is inviting and easy to get
comfortable with in early exposure.

While JavaScript is perhaps one of the easiest languages to get up
and running with, its eccentricities make solid mastery of the lan‐
guage a vastly less common occurrence than in many other lan‐

vii

guages. Where it takes a pretty in-depth knowledge of a language
like C or C++ to write a full-scale program, full-scale production
JavaScript can, and often does, barely scratch the surface of what the
language can do.

Sophisticated concepts that are deeply rooted into the language tend
instead to surface themselves in seemingly simplistic ways, such as
passing around functions as callbacks, which encourages the Java‐
Script developer to just use the language as is and not worry too
much about what’s going on under the hood.

It is simultaneously a simple, easy-to-use language that has broad
appeal, and a complex and nuanced collection of language mechan‐
ics that without careful study will elude true understanding even for
the most seasoned of JavaScript developers.

Therein lies the paradox of JavaScript, the Achilles’ heel of the lan‐
guage, the challenge we are presently addressing. Because JavaScript
can be used without understanding, the understanding of the lan‐
guage is often never attained.

Mission
If at every point that you encounter a surprise or frustration in Java‐
Script, your response is to add it to the blacklist (as some are accus‐
tomed to doing), you soon will be relegated to a hollow shell of the
richness of JavaScript.

While this subset has been famously dubbed “The Good Parts,” I
would implore you, dear reader, to instead consider it the “The Easy
Parts,” “The Safe Parts,” or even “The Incomplete Parts.”

This You Don’t Know JS series offers a contrary challenge: learn and
deeply understand all of JavaScript, even and especially “The Tough
Parts.”

Here, we address head-on the tendency of JS developers to learn just
enough to get by, without ever forcing themselves to learn exactly
how and why the language behaves the way it does. Furthermore, we
eschew the common advice to retreat when the road gets rough.

viii | Preface

I am not content, nor should you be, at stopping once something
just works and not really knowing why. I gently challenge you to
journey down that bumpy “road less traveled” and embrace all that
JavaScript is and can do. With that knowledge, no technique, no
framework, and no popular buzzword acronym of the week will be
beyond your understanding.

These books each take on specific core parts of the language that are
most commonly misunderstood or under-understood, and dive
deep and exhaustively into them. You should come away from read‐
ing with a firm confidence in your understanding, not just of the
theoretical, but the practical “what you need to know” bits.

The JavaScript you know right now is probably parts handed down
to you by others who’ve been burned by incomplete understanding.
That JavaScript is but a shadow of the true language. You don’t really
know JavaScript yet, but if you dig into this series, you will. Read on,
my friends. JavaScript awaits you.

Review
JavaScript is awesome. It’s easy to learn partially, and much harder to
learn completely (or even sufficiently). When developers encounter
confusion, they usually blame the language instead of their lack of
understanding. These books aim to fix that, inspiring a strong
appreciation for the language you can now, and should, deeply know.

Many of the examples in this book assume
modern (and future-reaching) JavaScript engine
environments, such as ES6. Some code may not
work as described if run in older (pre-ES6)
engines.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file
extensions.

Preface | ix

Constant width

Used for program listings, as well as within paragraphs to refer
to program elements such as variable or function names, data‐
bases, data types, environment variables, statements, and key‐
words.

Constant width bold

Shows commands or other text that should be typed literally by
the user.

Constant width italic

Shows text that should be replaced with user-supplied values or
by values determined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available
for download at http://bit.ly/ydkjs-up-going-code.

This book is here to help you get your job done. In general, if exam‐
ple code is offered with this book, you may use it in your programs
and documentation. You do not need to contact us for permission
unless you’re reproducing a significant portion of the code. For
example, writing a program that uses several chunks of code from
this book does not require permission. Selling or distributing a CD-
ROM of examples from O’Reilly books does require permission.
Answering a question by citing this book and quoting example code

x | Preface

http://bit.ly/ydkjs-up-going-code

does not require permission. Incorporating a significant amount of
example code from this book into your product’s documentation
does require permission.

We appreciate, but do not require, attribution. An attribution usu‐
ally includes the title, author, publisher, and ISBN. For example:
“You Don’t Know JavaScript: Up & Going by Kyle Simpson (O’Reilly).
Copyright 2015 Getify Solutions, Inc., 978-1-491-92446-4.”

If you feel your use of code examples falls outside fair use or the per‐
mission given above, feel free to contact us at permis‐
sions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand digital
library that delivers expert content in both
book and video form from the world’s lead‐
ing authors in technology and business.

Technology professionals, software developers, web designers, and
business and creative professionals use Safari Books Online as their
primary resource for research, problem solving, learning, and certif‐
ication training.

Safari Books Online offers a range of plans and pricing for enter‐
prise, government, education, and individuals.

Members have access to thousands of books, training videos, and
prepublication manuscripts in one fully searchable database from
publishers like O’Reilly Media, Prentice Hall Professional, Addison-
Wesley Professional, Microsoft Press, Sams, Que, Peachpit Press,
Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan
Kaufmann, IBM Redbooks, Packt, Adobe Press, FT Press, Apress,
Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Tech‐
nology, and hundreds more. For more information about Safari
Books Online, please visit us online.

Preface | xi

mailto:permissions@oreilly.com
mailto:permissions@oreilly.com
http://safaribooksonline.com
https://www.safaribooksonline.com/explore/
https://www.safaribooksonline.com/pricing/
https://www.safaribooksonline.com/enterprise/
https://www.safaribooksonline.com/enterprise/
https://www.safaribooksonline.com/government/
https://www.safaribooksonline.com/academic-public-library/
https://www.safaribooksonline.com/our-library/

How to Contact Us
Please address comments and questions concerning this book to the
publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples,
and any additional information. You can access this page at http://
bit.ly/ydkjs_up-and-going.

To comment or ask technical questions about this book, send email
to bookquestions@oreilly.com.

For more information about our books, courses, conferences, and
news, see our website at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

xii | Preface

http://bit.ly/ydkjs_up-and-going
http://bit.ly/ydkjs_up-and-going
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

CHAPTER 1

Into Programming

Welcome to the You Don’t Know JS (YDKJS) series.

Up & Going is an introduction to several basic concepts of program‐
ming—of course we lean toward JavaScript (often abbreviated JS)
specifically—and how to approach and understand the rest of the
titles in this series. Especially if you’re just getting into programming
and/or JavaScript, this book will briefly explore what you need to get
up and going.

This book starts off explaining the basic principles of programming
at a very high level. It’s mostly intended if you are starting YDKJS
with little to no prior programming experience, and are looking to
these books to help get you started along a path to understanding
programming through the lens of JavaScript.

Chapter 1 should be approached as a quick overview of the things
you’ll want to learn more about and practice to get into program‐
ming. There are also many other fantastic programming introduc‐
tion resources that can help you dig into these topics further, and I
encourage you to learn from them in addition to this chapter.

Once you feel comfortable with general programming basics, Chap‐
ter 2 will help guide you to a familiarity with JavaScript’s flavor of
programming. Chapter 2 introduces what JavaScript is about, but
again, it’s not a comprehensive guide—that’s what the rest of the
YDKJS books are for!

1

If you’re already fairly comfortable with JavaScript, first check out
Chapter 3 as a brief glimpse of what to expect from YDKJS, then
jump right in!

Code
Let’s start from the beginning.

A program, often referred to as source code or just code, is a set of
special instructions to tell the computer what tasks to perform. Usu‐
ally code is saved in a text file, although with JavaScript you can also
type code directly into a developer console in a browser, which we’ll
cover shortly.

The rules for valid format and combinations of instructions is called
a computer language, sometimes referred to as its syntax, much the
same as English tells you how to spell words and how to create valid
sentences using words and punctuation.

Statements
In a computer language, a group of words, numbers, and operators
that performs a specific task is a statement. In JavaScript, a statement
might look as follows:

a = b * 2;

The characters a and b are called variables (see “Variables” on page
14), which are like simple boxes you can store any of your stuff in.
In programs, variables hold values (like the number 42) to be used
by the program. Think of them as symbolic placeholders for the val‐
ues themselves.

By contrast, the 2 is just a value itself, called a literal value, because it
stands alone without being stored in a variable.

The = and * characters are operators (see “Operators” on page 8)—
they perform actions with the values and variables such as assign‐
ment and mathematic multiplication.

Most statements in JavaScript conclude with a semicolon (;) at the
end.

The statement a = b * 2; tells the computer, roughly, to get the
current value stored in the variable b, multiply that value by 2, then
store the result back into another variable we call a.

2 | Chapter 1: Into Programming

Programs are just collections of many such statements, which
together describe all the steps that it takes to perform your pro‐
gram’s purpose.

Expressions
Statements are made up of one or more expressions. An expression is
any reference to a variable or value, or a set of variable(s) and
value(s) combined with operators.

For example:

a = b * 2;

This statement has four expressions in it:

• 2 is a literal value expression.
• b is a variable expression, which means to retrieve its current

value.
• b * 2 is an arithmetic expression, which means to do the multi‐

plication.
• a = b * 2 is an assignment expression, which means to assign

the result of the b * 2 expression to the variable a (more on
assignments later).

A general expression that stands alone is also called an expression
statement, such as the following:

b * 2;

This flavor of expression statement is not very common or useful, as
generally it wouldn’t have any effect on the running of the program
—it would retrieve the value of b and multiply it by 2, but then
wouldn’t do anything with that result.

A more common expression statement is a call expression statement
(see “Functions” on page 22), as the entire statement is the function
call expression itself:

alert(a);

Expressions | 3

Executing a Program
How do those collections of programming statements tell the com‐
puter what to do? The program needs to be executed, also referred to
as running the program.

Statements like a = b * 2 are helpful for developers when reading
and writing, but are not actually in a form the computer can directly
understand. So a special utility on the computer (either an inter‐
preter or a compiler) is used to translate the code you write into com‐
mands a computer can understand.

For some computer languages, this translation of commands is typi‐
cally done from top to bottom, line by line, every time the program
is run, which is usually called interpreting the code.

For other languages, the translation is done ahead of time, called
compiling the code, so when the program runs later, what’s running
is actually the already compiled computer instructions ready to go.

It’s typically asserted that JavaScript is interpreted, because your Java‐
Script source code is processed each time it’s run. But that’s not
entirely accurate. The JavaScript engine actually compiles the pro‐
gram on the fly and then immediately runs the compiled code.

For more information on JavaScript compiling,
see the first two chapters of the Scope & Closures
title of this series.

Try It Yourself
This chapter is going to introduce each programming concept with
simple snippets of code, all written in JavaScript (obviously!).

It cannot be emphasized enough: while you go through this chapter
—and you may need to spend the time to go over it several times—
you should practice each of these concepts by typing the code your‐
self. The easiest way to do that is to open up the developer tools con‐
sole in your nearest browser (Firefox, Chrome, IE, etc.).

4 | Chapter 1: Into Programming

Typically, you can launch the developer console
with a keyboard shortcut or from a menu item.
For more detailed information about launching
and using the console in your favorite browser,
see “Mastering The Developer Tools Console”.
To type multiple lines into the console at once,
use <shift> + <enter> to move to the next
new line. Once you hit <enter> by itself, the
console will run everything you’ve just typed.

Let’s get familiar with the process of running code in the console.
First, I suggest opening up an empty tab in your browser. I prefer to
do this by typing about:blank into the address bar. Then, make sure
your developer console is open, as we just mentioned.

Now, type this code and see how it runs:

a = 21;

b = a * 2;

console.log(b);

Typing the preceding code into the console in Chrome should pro‐
duce something like the following:

Go on, try it. The best way to learn programming is to start coding!

Try It Yourself | 5

http://blog.teamtreehouse.com/mastering-developer-tools-console

Output
In the previous code snippet, we used console.log(..). Briefly, let’s
look at what that line of code is all about.

You may have guessed, but that’s exactly how we print text (aka out‐
put to the user) in the developer console. There are two characteris‐
tics of that statement that we should explain.

First, the log(b) part is referred to as a function call (see “Func‐
tions” on page 22). What’s happening is we’re handing the b variable
to that function, which asks it to take the value of b and print it to
the console.

Second, the console. part is an object reference where the log(..)
function is located. We cover objects and their properties in more
detail in Chapter 2.

Another way of creating output that you can see is to run an
alert(..) statement. For example:

alert(b);

If you run that, you’ll notice that instead of printing the output to
the console, it shows a pop-up “OK” box with the contents of the b
variable. However, using console.log(..) is generally going to
make learning about coding and running your programs in the con‐
sole easier than using alert(..) because you can output many val‐
ues at once without interrupting the browser interface.

For this book, we’ll use console.log(..) for output.

Input
While we’re discussing output, you may also wonder about input
(i.e., receiving information from the user).

The most common way that happens is for the HTML page to show
form elements (like text boxes) to a user that she can type into, and
then use JS to read those values into your program’s variables.

But there’s an easier way to get input for simple learning and dem‐
onstration purposes such as what you’ll be doing throughout this
book. Use the prompt(..) function:

6 | Chapter 1: Into Programming

age = prompt("Please tell me your age:");

console.log(age);

As you may have guessed, the message you pass to prompt(..)—in
this case, "Please tell me your age:"—is printed into the pop
up.

This should look similar to the following:

Once you submit the input text by clicking “OK,” you’ll observe that
the value you typed is stored in the age variable, which we then out‐
put with console.log(..):

To keep things simple while we’re learning basic programming con‐
cepts, the examples in this book will not require input. But now that
you’ve seen how to use prompt(..), if you want to challenge your‐
self, you can try to use input in your explorations of the examples.

Try It Yourself | 7

Operators
Operators are how we perform actions on variables and values.
We’ve already seen two JavaScript operators, the = and the *.

The * operator performs mathematic multiplication. Simple enough,
right?

The = equals operator is used for assignment—we first calculate the
value on the right-hand side (source value) of the = and then put it
into the variable that we specify on the left-hand side (target vari‐
able).

This may seem like a strange reverse order to
specify assignment. Instead of a = 42, some
might prefer to flip the order so the source value
is on the left and the target variable is on the
right, like 42 -> a (this is not valid JavaScript!).
Unfortunately, the a = 42 ordered form, and
similar variations, is quite prevalent in modern
programming languages. If it feels unnatural,
just spend some time rehearsing that order in
your mind to get accustomed to it.

Consider:

a = 2;
b = a + 1;

Here, we assign the 2 value to the a variable. Then, we get the value
of the a variable (still 2), add 1 to it resulting in the value 3, then
store that value in the b variable.

While not technically an operator, you’ll need the keyword var in
every program, as it’s the primary way you declare (aka create)
variables (see “Variables” on page 14).

You should always declare the variable by name before you use it.
But you only need to declare a variable once for each scope (see
“Scope” on page 24); it can be used as many times after that as
needed. For example:

var a = 20;

a = a + 1;
a = a * 2;

8 | Chapter 1: Into Programming

console.log(a); // 42

Here are some of the most common operators in JavaScript:

Assignment
=, as in a = 2.

Math
+ (addition), - (subtraction), * (multiplication), and / (divi‐
sion), as in a * 3.

Compound assignment
+=, -=, *=, and /= are compound operators that combine a math
operation with assignment, as in a += 2 (same as a = a + 2).

Increment/decrement
++ (increment), -- (decrement), as in a++ (similar to a = a +
1).

Object property access
. as in console.log().

Objects are values that hold other values at specific named loca‐
tions called properties. obj.a means an object value called obj
with a property of the name a. Properties can alternatively be
accessed as obj["a"]. See Chapter 2.

Equality
== (loose-equals), === (strict-equals), != (loose not-equals), !==
(strict not-equals), as in a == b.

See “Values & Types” on page 10 and Chapter 2.

Comparison
< (less than), > (greater than), <= (less than or loose-equals), >=
(greater than or loose-equals), as in a <= b.

See “Values & Types” on page 10 and Chapter 2.

Logical
&& (and), || (or), as in a || b that selects either a or b.

These operators are used to express compound conditionals
(see “Conditionals” on page 18), like if either a or b is true.

Operators | 9

For much more detail, and coverage of operators
not mentioned here, see the Mozilla Developer
Network (MDN)’s “Expressions and Operators”.

Values & Types
If you ask an employee at a phone store how much a certain phone
costs, and he says “ninety-nine, ninety-nine” (i.e., $99.99), he’s giv‐
ing you an actual numeric dollar figure that represents what you’ll
need to pay (plus taxes) to buy it. If you want to buy two of those
phones, you can easily do the mental math to double that value to
get $199.98 for your base cost.

If that same employee picks up another similar phone but says it’s
“free” (perhaps with air quotes), he’s not giving you a number, but
instead another kind of representation of your expected cost ($0.00)
—the word “free.”

When you later ask if the phone includes a charger, the answer can
only be “yes” or “no.”

In very similar ways, when you express values in a programs, you
choose different representations for those values based on what you
plan to do with them.

These different representations for values are called types in pro‐
gramming terminology. JavaScript has built-in types for each of
these so-called primitive values:

• When you need to do math, you want a number.
• When you need to print a value on the screen, you need a
string (one or more characters, words, or sentences).

• When you need to make a decision in your program, you need a
boolean (true or false).

Values that are included directly in the source code are called liter‐
als. string literals are surrounded by double quotes ("...") or sin‐
gle quotes ('...')—the only difference is stylistic preference.
number and boolean literals are just presented as is (e.g., 42, true,
etc.).

10 | Chapter 1: Into Programming

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Expressions_and_Operators

Consider:

"I am a string";
'I am also a string';

42;

true;
false;

Beyond string/number/boolean value types, it’s common for pro‐
gramming languages to provide arrays, objects, functions, and more.
We’ll cover much more about values and types throughout this
chapter and the next.

Converting Between Types
If you have a number but need to print it on the screen, you need to
convert the value to a string, and in JavaScript this conversion is
called “coercion.” Similarly, if someone enters a series of numeric
characters into a form on an ecommerce page, that’s a string, but if
you need to then use that value to do math operations, you need to
coerce it to a number.

JavaScript provides several different facilities for forcibly coercing
between types. For example:

var a = "42";
var b = Number(a);

console.log(a); // "42"
console.log(b); // 42

Using Number(..) (a built-in function) as shown is an explicit coer‐
cion from any other type to the number type. That should be pretty
straightforward.

But a controversial topic is what happens when you try to compare
two values that are not already of the same type, which would
require implicit coercion.

When comparing the string "99.99" to the number 99.99, most
people would agree they are equivalent. But they’re not exactly the
same, are they? It’s the same value in two different representations,
two different types. You could say they’re “loosely equal,” couldn’t
you?

Values & Types | 11

To help you out in these common situations, JavaScript will some‐
times kick in and implicitly coerce values to the matching types.

So if you use the == loose-equals operator to make the comparison
"99.99" == 99.99, JavaScript will convert the left-hand side
"99.99" to its number equivalent 99.99. The comparison then
becomes 99.99 == 99.99, which is of course true.

While designed to help you, implicit coercion can create confusion
if you haven’t taken the time to learn the rules that govern its behav‐
ior. Most JS developers never have, so the common feeling is that
implicit coercion is confusing and harms programs with unexpected
bugs, and should thus be avoided. It’s even sometimes called a flaw
in the design of the language.

However, implicit coercion is a mechanism that can be learned, and
moreover should be learned by anyone wishing to take JavaScript
programming seriously. Not only is it not confusing once you learn
the rules, it can actually make your programs better! The effort is
well worth it.

For more information on coercion, see Chap‐
ter 2 of this title and Chapter 4 of the Types &
Grammar title of this series.

Code Comments
The phone store employee might jot down some notes on the fea‐
tures of a newly released phone or on the new plans her company
offers. These notes are only for the employee—they’re not for cus‐
tomers to read. Nevertheless, these notes help the employee do her
job better by documenting the hows and whys of what she should
tell customers.

One of the most important lessons you can learn about writing code
is that it’s not just for the computer. Code is every bit as much, if not
more, for the developer as it is for the compiler.

Your computer only cares about machine code, a series of binary 0s
and 1s, that comes from compilation. There’s a nearly infinite num‐
ber of programs you could write that yield the same series of 0s and
1s. The choices you make about how to write your program matter

12 | Chapter 1: Into Programming

—not only to you, but to your other team members and even to
your future self.

You should strive not just to write programs that work correctly, but
programs that make sense when examined. You can go a long way in
that effort by choosing good names for your variables (see “Vari‐
ables” on page 14) and functions (see “Functions” on page 22).

But another important part is code comments. These are bits of text
in your program that are inserted purely to explain things to a
human. The interpreter/compiler will always ignore these com‐
ments.

There are lots of opinions on what makes well-commented code; we
can’t really define absolute universal rules. But some observations
and guidelines are quite useful:

• Code without comments is suboptimal.
• Too many comments (one per line, for example) is probably a

sign of poorly written code.
• Comments should explain why, not what. They can optionally

explain how if what’s written is particularly confusing.

In JavaScript, there are two types of comments possible: a single-line
comment and a multiline comment.

Consider:

// This is a single-line comment

/* But this is
 a multiline
 comment.
 */

The // single-line comment is appropriate if you’re going to put a
comment right above a single statement, or even at the end of a line.
Everything on the line after the // is treated as the comment (and
thus ignored by the compiler), all the way to the end of the line.
There’s no restriction to what can appear inside a single-line com‐
ment.

Consider:

var a = 42; // 42 is the meaning of life

Code Comments | 13

The /* .. */ multiline comment is appropriate if you have several
lines worth of explanation to make in your comment.

Here’s a common usage of multiline comments:

/* The following value is used because
 it has been shown that it answers
 every question in the universe. */
var a = 42;

It can also appear anywhere on a line, even in the middle of a line,
because the */ ends it. For example:

var a = /* arbitrary value */ 42;

console.log(a); // 42

The only thing that cannot appear inside a multiline comment is a
*/, because that would be interpreted to end the comment.

You will definitely want to begin your learning of programming by
starting off with the habit of commenting code. Throughout the rest
of this chapter, you’ll see I use comments to explain things, so do the
same in your own practice. Trust me, everyone who reads your code
will thank you!

Variables
Most useful programs need to track a value as it changes over the
course of the program, undergoing different operations as called for
by your program’s intended tasks.

The easiest way to go about that in your program is to assign a value
to a symbolic container, called a variable—so called because the
value in this container can vary over time as needed.

In some programming languages, you declare a variable (container)
to hold a specific type of value, such as number or string. Static typ‐
ing, otherwise known as type enforcement, is typically cited as a ben‐
efit for program correctness by preventing unintended value
conversions.

Other languages emphasize types for values instead of variables.
Weak typing, otherwise known as dynamic typing, allows a variable
to hold any type of value at any time. It’s typically cited as a benefit
for program flexibility by allowing a single variable to represent a

14 | Chapter 1: Into Programming

value no matter what type form that value may take at any given
moment in the program’s logic flow.

JavaScript uses the latter approach, dynamic typing, meaning vari‐
ables can hold values of any type without any type enforcement.

As mentioned earlier, we declare a variable using the var statement
—notice there’s no other type information in the declaration. Con‐
sider this simple program:

var amount = 99.99;

amount = amount * 2;

console.log(amount); // 199.98

// convert `amount` to a string, and
// add "$" on the beginning
amount = "$" + String(amount);

console.log(amount); // "$199.98"

The amount variable starts out holding the number 99.99, and then
holds the number result of amount * 2, which is 199.98.

The first console.log(..) command has to implicitly coerce that
number value to a string to print it out.

Then the statement amount = "$" + String(amount) explicitly
coerces the 199.98 value to a string and adds a "$" character to the
beginning. At this point, amount now holds the string value
"$199.98", so the second console.log(..) statement doesn’t need
to do any coercion to print it out.

JavaScript developers will note the flexibility of using the amount
variable for each of the 99.99, 199.98, and the "$199.98" values.
Static-typing enthusiasts would prefer a separate variable like
amountStr to hold the final "$199.98" representation of the value,
because it’s a different type.

Either way, you’ll note that amount holds a running value that
changes over the course of the program, illustrating the primary
purpose of variables: managing program state.

In other words, state is tracking the changes to values as your pro‐
gram runs.

Variables | 15

Another common usage of variables is for centralizing value setting.
This is more typically called constants, when you declare a variable
with a value and intend for that value to not change throughout the
program.

You declare these constants, often at the top of a program, so that it’s
convenient for you to have one place to go to alter a value if you
need to. By convention, JavaScript variables as constants are usually
capitalized, with underscores _ between multiple words.

Here’s a silly example:

var TAX_RATE = 0.08; // 8% sales tax

var amount = 99.99;

amount = amount * 2;

amount = amount + (amount * TAX_RATE);

console.log(amount); // 215.9784
console.log(amount.toFixed(2)); // "215.98"

Similar to how console.log(..) is a function
log(..) accessed as an object property on the
console value, toFixed(..) here is a function
that can be accessed on number values. JavaScript
numbers aren’t automatically formatted for dol‐
lars—the engine doesn’t know what your intent
is, and there’s no type for currency. toFixed(..)
lets us specify how many decimal places we’d
like the number rounded to, and it produces the
string as necessary.

The TAX_RATE variable is only constant by convention—there’s noth‐
ing special in this program that prevents it from being changed. But
if the city raises the sales tax rate to 9%, we can still easily update our
program by setting the TAX_RATE assigned value to 0.09 in one
place, instead of finding many occurrences of the value 0.08 strewn
throughout the program and updating all of them.

The newest version of JavaScript at the time of this writing (com‐
monly called “ES6”) includes a new way to declare constants, by
using const instead of var:

16 | Chapter 1: Into Programming

// as of ES6:
const TAX_RATE = 0.08;

var amount = 99.99;

// ..

Constants are useful just like variables with unchanged values,
except that constants also prevent accidentally changing value some‐
where else after the initial setting. If you tried to assign any different
value to TAX_RATE after that first declaration, your program would
reject the change (and in strict mode, fail with an error—see “Strict
Mode” on page 45 in Chapter 2).

By the way, that kind of “protection” against mistakes is similar to
the static-typing type enforcement, so you can see why static types
in other languages can be attractive!

For more information about how different val‐
ues in variables can be used in your programs,
see the Types & Grammar title of this series.

Blocks
The phone store employee must go through a series of steps to com‐
plete the checkout as you buy your new phone.

Similarly, in code we often need to group a series of statements
together, which we often call a block. In JavaScript, a block is defined
by wrapping one or more statements inside a curly-brace pair
{ .. }. Consider:

var amount = 99.99;

// a general block
{
 amount = amount * 2;
 console.log(amount); // 199.98
}

This kind of standalone { .. } general block is valid, but isn’t as
commonly seen in JS programs. Typically, blocks are attached to
some other control statement, such as an if statement (see “Condi‐
tionals” on page 18) or a loop (see “Loops” on page 20). For exam‐
ple:

Blocks | 17

var amount = 99.99;

// is amount big enough?
if (amount > 10) { // <-- block attached to `if`
 amount = amount * 2;
 console.log(amount); // 199.98
}

We’ll explain if statements in the next section, but as you can see,
the { .. } block with its two statements is attached to if (amount
> 10); the statements inside the block will only be processed if the
conditional passes.

Unlike most other statements like con

sole.log(amount);, a block statement does not
need a semicolon (;) to conclude it.

Conditionals
“Do you want to add on the extra screen protectors to your pur‐
chase, for $9.99?” The helpful phone store employee has asked you
to make a decision. And you may need to first consult the current
state of your wallet or bank account to answer that question. But
obviously, this is just a simple “yes or no” question.

There are quite a few ways we can express conditionals (aka deci‐
sions) in our programs.

The most common one is the if statement. Essentially, you’re say‐
ing, “If this condition is true, do the following…”. For example:

var bank_balance = 302.13;
var amount = 99.99;

if (amount < bank_balance) {
 console.log("I want to buy this phone!");
}

The if statement requires an expression in between the parentheses
() that can be treated as either true or false. In this program, we
provided the expression amount < bank_balance, which indeed will
either evaluate to true or false, depending on the amount in the
bank_balance variable.

18 | Chapter 1: Into Programming

You can even provide an alternative if the condition isn’t true, called
an else clause. Consider:

const ACCESSORY_PRICE = 9.99;

var bank_balance = 302.13;
var amount = 99.99;

amount = amount * 2;

// can we afford the extra purchase?
if (amount < bank_balance) {
 console.log("I'll take the accessory!");
 amount = amount + ACCESSORY_PRICE;
}
// otherwise:
else {
 console.log("No, thanks.");
}

Here, if amount < bank_balance is true, we’ll print out "I'll take
the accessory!" and add the 9.99 to our amount variable. Other‐
wise, the else clause says we’ll just politely respond with "No,
thanks." and leave amount unchanged.

As we discussed in “Values & Types” on page 10, values that aren’t
already of an expected type are often coerced to that type. The if
statement expects a boolean, but if you pass it something that’s not
already boolean, coercion will occur.

JavaScript defines a list of specific values that are considered “falsy”
because when coerced to a boolean, they become false—these
include values like 0 and "". Any other value not on the “falsy” list is
automatically “truthy”—when coerced to a boolean they become
true. Truthy values include things like 99.99 and "free". See “Tru‐
thy & falsy” on page 36 in Chapter 2 for more information.

Conditionals exist in other forms besides the if. For example, the
switch statement can be used as a shorthand for a series of
if..else statements (see Chapter 2). Loops (see “Loops” on page
20) use a conditional to determine if the loop should keep going or
stop.

Conditionals | 19

For deeper information about the coercions that
can occur implicitly in the test expressions of
conditionals, see Chapter 4 of the Types & Gram‐
mar title of this series.

Loops
During busy times, there’s a waiting list for customers who need to
speak to the phone store employee. While there’s still people on that
list, she just needs to keep serving the next customer.

Repeating a set of actions until a certain condition fails—in other
words, repeating only while the condition holds—is the job of pro‐
gramming loops; loops can take different forms, but they all satisfy
this basic behavior.

A loop includes the test condition as well as a block (typically as
{ .. }). Each time the loop block executes, that’s called an iteration.

For example, the while loop and the do..while loop forms illustrate
the concept of repeating a block of statements until a condition no
longer evaluates to true:

while (numOfCustomers > 0) {
 console.log("How may I help you?");

 // help the customer...

 numOfCustomers = numOfCustomers - 1;
}

// versus:

do {
 console.log("How may I help you?");

 // help the customer...

 numOfCustomers = numOfCustomers - 1;
} while (numOfCustomers > 0);

The only practical difference between these loops is whether the
conditional is tested before the first iteration (while) or after the
first iteration (do..while).

20 | Chapter 1: Into Programming

In either form, if the conditional tests as false, the next iteration
will not run. That means if the condition is initially false, a while
loop will never run, but a do..while loop will run just the first time.

Sometimes you are looping for the intended purpose of counting a
certain set of numbers, like from 0 to 9 (10 numbers). You can do
that by setting a loop iteration variable like i at value 0 and incre‐
menting it by 1 each iteration.

For a variety of historical reasons, programming
languages almost always count things in a zero-
based fashion, meaning starting with 0 instead
of 1. If you’re not familiar with that mode of
thinking, it can be quite confusing at first. Take
some time to practice counting starting with 0 to
become more comfortable with it!

The conditional is tested on each iteration, much as if there is an
implied if statement inside the loop.

We can use JavaScript’s break statement to stop a loop. Also, we can
observe that it’s awfully easy to create a loop that would otherwise
run forever without a breaking mechanism.

Let’s illustrate:

var i = 0;

// a `while..true` loop would run forever, right?
while (true) {
 // keep the loop going?
 if (i <= 9) {
 console.log(i);
 i = i + 1;
 }
 // time to stop the loop!
 else {
 break;
 }
}
// 0 1 2 3 4 5 6 7 8 9

This is not necessarily a practical form you’d
want to use for your loops. It’s presented here for
illustration purposes only.

Loops | 21

While a while (or do..while) can accomplish the task manually,
there’s another syntactic form called a for loop for just that purpose:

for (var i = 0; i <= 9; i = i + 1) {
 console.log(i);
}
// 0 1 2 3 4 5 6 7 8 9

As you can see, in both cases the conditional i <= 9 is true for the
first 10 iterations (i of values 0 through 9) of either loop form, but
becomes false once i is value 10.

The for loop has three clauses: the initialization clause (var i=0),
the conditional test clause (i <= 9), and the update clause (i = i +
1). So if you’re going to do counting with your loop iterations, for is
a more compact and often easier form to understand and write.

There are other specialized loop forms that are intended to iterate
over specific values, such as the properties of an object (see Chap‐
ter 2) where the implied conditional test is just whether all the prop‐
erties have been processed. The “loop until a condition fails”
concept holds no matter what the form of the loop.

Functions
The phone store employee probably doesn’t carry around a calcula‐
tor to figure out the taxes and final purchase amount. That’s a task
she needs to define once and reuse over and over again. Odds are,
the company has a checkout register (computer, tablet, etc.) with
those “functions” built in.

Similarly, your program will almost certainly want to break up the
code’s tasks into reusable pieces, instead of repeatedly repeating
yourself repetitiously (pun intended!). The way to do this is to
define a function.

A function is generally a named section of code that can be “called”
by name, and the code inside it will be run each time. Consider:

function printAmount() {
 console.log(amount.toFixed(2));
}

var amount = 99.99;

printAmount(); // "99.99"

22 | Chapter 1: Into Programming

amount = amount * 2;

printAmount(); // "199.98"

Functions can optionally take arguments (aka parameters)—values
you pass in. And they can also optionally return a value back:

function printAmount(amt) {
 console.log(amt.toFixed(2));
}

function formatAmount() {
 return "$" + amount.toFixed(2);
}

var amount = 99.99;

printAmount(amount * 2); // "199.98"

amount = formatAmount();
console.log(amount); // "$99.99"

The function printAmount(..) takes a parameter that we call amt.
The function formatAmount() returns a value. Of course, you can
also combine those two techniques in the same function.

Functions are often used for code that you plan to call multiple
times, but they can also be useful just to organize related bits of code
into named collections, even if you only plan to call them once.

Consider:

const TAX_RATE = 0.08;

function calculateFinalPurchaseAmount(amt) {
 // calculate the new amount with the tax
 amt = amt + (amt * TAX_RATE);

 // return the new amount
 return amt;
}

var amount = 99.99;

amount = calculateFinalPurchaseAmount(amount);

console.log(amount.toFixed(2)); // "107.99"

Although calculateFinalPurchaseAmount(..) is only called once,
organizing its behavior into a separate named function makes the
code that uses its logic (the amount = calculateFinal... state‐

Functions | 23

ment) cleaner. If the function had more statements in it, the benefits
would be even more pronounced.

Scope
If you ask the phone store employee for a phone model that her
store doesn’t carry, she will not be able to sell you the phone you
want. She only has access to the phones in her store’s inventory.
You’ll have to try another store to see if you can find the phone
you’re looking for.

Programming has a term for this concept: scope (technically called
lexical scope). In JavaScript, each function gets its own scope. Scope
is basically a collection of variables as well as the rules for how those
variables are accessed by name. Only code inside that function can
access that function’s scoped variables.

A variable name has to be unique within the same scope—there
can’t be two different a variables sitting right next to each other. But
the same variable name a could appear in different scopes:

function one() {
 // this `a` only belongs to the `one()` function
 var a = 1;
 console.log(a);
}

function two() {
 // this `a` only belongs to the `two()` function
 var a = 2;
 console.log(a);
}

one(); // 1
two(); // 2

Also, a scope can be nested inside another scope, just like if a clown
at a birthday party blows up one balloon inside another balloon. If
one scope is nested inside another, code inside the innermost scope
can access variables from either scope.

Consider:

24 | Chapter 1: Into Programming

function outer() {
 var a = 1;

 function inner() {
 var b = 2;

 // we can access both `a` and `b` here
 console.log(a + b); // 3
 }

 inner();

 // we can only access `a` here
 console.log(a); // 1
}

outer();

Lexical scope rules say that code in one scope can access variables of
either that scope or any scope outside of it.

So, code inside the inner() function has access to both variables a
and b, but code only in outer() has access only to a—it cannot
access b because that variable is only inside inner().

Recall this code snippet from earlier:

const TAX_RATE = 0.08;

function calculateFinalPurchaseAmount(amt) {
 // calculate the new amount with the tax
 amt = amt + (amt * TAX_RATE);

 // return the new amount
 return amt;
}

The TAX_RATE constant (variable) is accessible from inside the calcu
lateFinalPurchaseAmount(..) function, even though we didn’t
pass it in, because of lexical scope.

For more information about lexical scope, see
the first three chapters of the Scope & Closures
title of this series.

Functions | 25

Practice
There is absolutely no substitute for practice in learning program‐
ming. No amount of articulate writing on my part is alone going to
make you a programmer.

With that in mind, let’s try practicing some of the concepts we
learned here in this chapter. I’ll give the “requirements,” and you try
it first. Then consult the code listing below to see how I approached
it:

• Write a program to calculate the total price of your phone pur‐
chase. You will keep purchasing phones (hint: loop!) until you
run out of money in your bank account. You’ll also buy accesso‐
ries for each phone as long as your purchase amount is below
your mental spending threshold.

• After you’ve calculated your purchase amount, add in the tax,
then print out the calculated purchase amount, properly for‐
matted.

• Finally, check the amount against your bank account balance to
see if you can afford it or not.

• You should set up some constants for the “tax rate,” “phone
price,” “accessory price,” and “spending threshold,” as well as a
variable for your “bank account balance.”

• You should define functions for calculating the tax and for for‐
matting the price with a “$” and rounding to two decimal
places.

• Bonus Challenge: Try to incorporate input into this program,
perhaps with the prompt(..) covered in “Input” on page 6. You
may prompt the user for their bank account balance, for exam‐
ple. Have fun and be creative!

OK, go ahead. Try it. Don’t peek at my code listing until you’ve given
it a shot yourself!

Because this is a JavaScript book, I’m obviously
going to solve the practice exercise in JavaScript.
But you can do it in another language for now if
you feel more comfortable.

26 | Chapter 1: Into Programming

Here’s my JavaScript solution for this exercise:

const SPENDING_THRESHOLD = 200;
const TAX_RATE = 0.08;
const PHONE_PRICE = 99.99;
const ACCESSORY_PRICE = 9.99;

var bank_balance = 303.91;
var amount = 0;

function calculateTax(amount) {
 return amount * TAX_RATE;
}

function formatAmount(amount) {
 return "$" + amount.toFixed(2);
}

// keep buying phones while you still have money
while (amount < bank_balance) {
 // buy a new phone!
 amount = amount + PHONE_PRICE;

 // can we afford the accessory?
 if (amount < SPENDING_THRESHOLD) {
 amount = amount + ACCESSORY_PRICE;
 }
}

// don't forget to pay the government, too
amount = amount + calculateTax(amount);

console.log(
 "Your purchase: " + formatAmount(amount)
);
// Your purchase: $334.76

// can you actually afford this purchase?
if (amount > bank_balance) {
 console.log(
 "You can't afford this purchase. :("
);
}
// You can't afford this purchase. :(

The simplest way to run this JavaScript program
is to type it into the developer console of your
nearest browser.

Practice | 27

How did you do? It wouldn’t hurt to try it again now that you’ve
seen my code. And play around with changing some of the con‐
stants to see how the program runs with different values.

Review
Learning programming doesn’t have to be a complex and over‐
whelming process. There are just a few basic concepts you need to
wrap your head around.

These act like building blocks. To build a tall tower, you start first by
putting block on top of block on top of block. The same goes with
programming. Here are some of the essential programming building
blocks:

• You need operators to perform actions on.
• You need values and types to perform different kinds of actions

like math on numbers or output with strings.
• You need variables to store data (aka state) during your pro‐

gram’s execution.
• You need conditionals like if statements to make decisions.
• You need loops to repeat tasks until a condition stops being true.
• You need functions to organize your code into logical and reusa‐

ble chunks.

Code comments are one effective way to write more readable code,
which makes your program easier to understand, maintain, and fix
later if there are problems.

Finally, don’t neglect the power of practice. The best way to learn
how to write code is to write code.

I’m excited you’re well on your way to learning how to code, now!
Keep it up. Don’t forget to check out other beginner programming
resources (books, blogs, online training, etc.). This chapter and this
book are a great start, but they’re just a brief introduction.

The next chapter will review many of the concepts from this chapter,
but from a more JavaScript-specific perspective, which will highlight
most of the major topics that are addressed in deeper detail
throughout the rest of the series.

28 | Chapter 1: Into Programming

CHAPTER 2

Into JavaScript

In the previous chapter, I introduced the basic building blocks of
programming, such as variables, loops, conditionals, and functions.
Of course, all the code shown has been in JavaScript. But in this
chapter, we want to focus specifically on things you need to know
about JavaScript to get up and going as a JS developer.

We will introduce quite a few concepts in this chapter that will not
be fully explored until subsequent YDKJS books. You can think of
this chapter as an overview of the topics covered in detail through‐
out the rest of this series.

Especially if you’re new to JavaScript, you should expect to spend
quite a bit of time reviewing the concepts and code examples here
multiple times. Any good foundation is laid brick by brick, so don’t
expect that you’ll immediately understand it all the first pass
through.

Your journey to deeply learn JavaScript starts here.

29

As I said in Chapter 1, you should definitely try
all this code yourself as you read and work
through this chapter. Be aware that some of the
code here assumes capabilities introduced in the
newest version of JavaScript at the time of this
writing (commonly referred to as “ES6” for the
6th edition of ECMAScript—the official name of
the JS specification). If you happen to be using
an older, pre-ES6 browser, the code may not
work. A recent update of a modern browser (like
Chrome, Firefox, or IE) should be used.

Values & Types
As we asserted in Chapter 1, JavaScript has typed values, not typed
variables. The following built-in types are available:

• string

• number

• boolean

• null and undefined
• object

• symbol (new to ES6)

JavaScript provides a typeof operator that can examine a value and
tell you what type it is:

var a;
typeof a; // "undefined"

a = "hello world";
typeof a; // "string"

a = 42;
typeof a; // "number"

a = true;
typeof a; // "boolean"

a = null;
typeof a; // "object"--weird, bug

a = undefined;
typeof a; // "undefined"

30 | Chapter 2: Into JavaScript

a = { b: "c" };
typeof a; // "object"

The return value from the typeof operator is always one of six
(seven as of ES6!) string values. That is, typeof "abc" returns
"string", not string.

Notice how in this snippet the a variable holds every different type
of value, and that despite appearances, typeof a is not asking for
the “type of a,” but rather for the “type of the value currently in a.”
Only values have types in JavaScript; variables are just simple con‐
tainers for those values.

typeof null is an interesting case because it errantly returns
"object" when you’d expect it to return "null".

This is a long-standing bug in JS, but one that is
likely never going to be fixed. Too much code on
the Web relies on the bug, and thus fixing it
would cause a lot more bugs!

Also, note a = undefined. We’re explicitly setting a to the unde
fined value, but that is behaviorally no different from a variable that
has no value set yet, like with the var a; line at the top of the snip‐
pet. A variable can get to this “undefined” value state in several dif‐
ferent ways, including functions that return no values and usage of
the void operator.

Objects
The object type refers to a compound value where you can set
properties (named locations) that each hold their own values of any
type. This is perhaps one of the most useful value types in all of Java‐
Script:

var obj = {
 a: "hello world",
 b: 42,
 c: true
};

obj.a; // "hello world"
obj.b; // 42
obj.c; // true

Values & Types | 31

obj["a"]; // "hello world"
obj["b"]; // 42
obj["c"]; // true

It may be helpful to think of this obj value visually:

Properties can either be accessed with dot notation (i.e., obj.a) or
bracket notation (i.e., obj["a"]). Dot notation is shorter and gener‐
ally easier to read, and is thus preferred when possible.

Bracket notation is useful if you have a property name that has spe‐
cial characters in it, like obj["hello world!"]—such properties are
often referred to as keys when accessed via bracket notation. The []
notation requires either a variable (explained next) or a string lit‐
eral (which needs to be wrapped in " .. " or ' .. ').

Of course, bracket notation is also useful if you want to access a
property/key but the name is stored in another variable, such as:

var obj = {
 a: "hello world",
 b: 42
};

var b = "a";

obj[b]; // "hello world"
obj["b"]; // 42

For more information on JavaScript objects, see
the this & Object Prototypes title of this series,
specifically Chapter 3.

There are a couple of other value types that you will commonly
interact with in JavaScript programs: array and function. But rather
than being proper built-in types, these should be thought of more
like subtypes—specialized versions of the object type.

32 | Chapter 2: Into JavaScript

Arrays

An array is an object that holds values (of any type) not particularly
in named properties/keys, but rather in numerically indexed posi‐
tions. For example:

var arr = [
 "hello world",
 42,
 true
];

arr[0]; // "hello world"
arr[1]; // 42
arr[2]; // true
arr.length; // 3

typeof arr; // "object"

Languages that start counting at zero, like JS
does, use 0 as the index of the first element in
the array.

It may be helpful to think of arr visually:

Because arrays are special objects (as typeof implies), they can also
have properties, including the automatically updated length prop‐
erty.

You theoretically could use an array as a normal object with your
own named properties, or you could use an object but only give it
numeric properties (0, 1, etc.) similar to an array. However, this
would generally be considered improper usage of the respective
types.

The best and most natural approach is to use arrays for numerically
positioned values and use objects for named properties.

Values & Types | 33

Functions

The other object subtype you’ll use all over your JS programs is a
function:

function foo() {
 return 42;
}

foo.bar = "hello world";

typeof foo; // "function"
typeof foo(); // "number"
typeof foo.bar; // "string"

Again, functions are a subtype of objects—typeof returns "func
tion", which implies that a function is a main type—and can thus
have properties, but you typically will only use function object prop‐
erties (like foo.bar) in limited cases.

For more information on JS values and their
types, see the first two chapters of the Types &
Grammar title of this series.

Built-In Type Methods
The built-in types and subtypes we’ve just discussed have behaviors
exposed as properties and methods that are quite powerful and use‐
ful.

For example:

var a = "hello world";
var b = 3.14159;

a.length; // 11
a.toUpperCase(); // "HELLO WORLD"
b.toFixed(4); // "3.1416"

The “how” behind being able to call a.toUpperCase() is more com‐
plicated than just that method existing on the value.

Briefly, there is a String (capital S) object wrapper form, typically
called a “native,” that pairs with the primitive string type; it’s this
object wrapper that defines the toUpperCase() method on its proto‐
type.

34 | Chapter 2: Into JavaScript

When you use a primitive value like "hello world" as an object by
referencing a property or method (e.g., a.toUpperCase() in the pre‐
vious snippet), JS automatically “boxes” the value to its object wrap‐
per counterpart (hidden under the covers).

A string value can be wrapped by a String object, a number can be
wrapped by a Number object, and a boolean can be wrapped by a
Boolean object. For the most part, you don’t need to worry about or
directly use these object wrapper forms of the values—prefer the
primitive value forms in practically all cases and JavaScript will take
care of the rest for you.

For more information on JS natives and “box‐
ing,” see Chapter 3 of the Types & Grammar title
of this series. To better understand the prototype
of an object, see Chapter 5 of the this & Object
Prototypes title of this series.

Comparing Values
There are two main types of value comparison that you will need to
make in your JS programs: equality and inequality. The result of any
comparison is a strictly boolean value (true or false), regardless of
what value types are compared.

Coercion
We talked briefly about coercion in Chapter 1, but let’s revisit it here.

Coercion comes in two forms in JavaScript: explicit and implicit.
Explicit coercion is simply that you can see from the code that a
conversion from one type to another will occur, whereas implicit
coercion is when the type conversion can happen as more of a non-
obvious side effect of some other operation.

You’ve probably heard sentiments like “coercion is evil” drawn from
the fact that there are clearly places where coercion can produce
some surprising results. Perhaps nothing evokes frustration from
developers more than when the language surprises them.

Coercion is not evil, nor does it have to be surprising. In fact, the
majority of cases you can construct with type coercion are quite
sensible and understandable, and can even be used to improve the
readability of your code. But we won’t go much further into that

Values & Types | 35

debate—Chapter 4 of the Types & Grammar title of this series covers
all sides.

Here’s an example of explicit coercion:

var a = "42";

var b = Number(a);

a; // "42"
b; // 42--the number!

And here’s an example of implicit coercion:

var a = "42";

var b = a * 1; // "42" implicitly coerced to 42 here

a; // "42"
b; // 42--the number!

Truthy & falsy
In Chapter 1, we briefly mentioned the “truthy” and “falsy” nature of
values: when a non-boolean value is coerced to a boolean, does it
become true or false, respectively?

The specific list of “falsy” values in JavaScript is as follows:

• "" (empty string)
• 0, -0, NaN (invalid number)
• null, undefined
• false

Any value that’s not on this “falsy” list is “truthy.” Here are some
examples of those:

• "hello"

• 42

• true

• [], [1, "2", 3] (arrays)
• { }, { a: 42 } (objects)
• function foo() { .. } (functions)

36 | Chapter 2: Into JavaScript

It’s important to remember that a non-boolean value only follows
this “truthy”/“falsy” coercion if it’s actually coerced to a boolean. It’s
not all that difficult to confuse yourself with a situation that seems
like it’s coercing a value to a boolean when it’s not.

Equality

There are four equality operators: ==, ===, !=, and !==. The ! forms
are of course the symmetric “not equal” versions of their counter‐
parts; non-equality should not be confused with inequality.

The difference between == and === is usually characterized that ==
checks for value equality and === checks for both value and type
equality. However, this is inaccurate. The proper way to characterize
them is that == checks for value equality with coercion allowed, and
=== checks for value equality without allowing coercion; === is often
called “strict equality” for this reason.

Consider the implicit coercion that’s allowed by the == loose-
equality comparison and not allowed with the === strict-equality:

var a = "42";
var b = 42;

a == b; // true
a === b; // false

In the a == b comparison, JS notices that the types do not match, so
it goes through an ordered series of steps to coerce one or both val‐
ues to a different type until the types match, where then a simple
value equality can be checked.

If you think about it, there’s two possible ways a == b could give
true via coercion. Either the comparison could end up as 42 == 42
or it could be "42" == "42". So which is it?

The answer: "42" becomes 42, to make the comparison 42 == 42. In
such a simple example, it doesn’t really seem to matter which way
that process goes, as the end result is the same. There are more com‐
plex cases where it matters not just what the end result of the com‐
parison is, but how you get there.

The a === b produces false, because the coercion is not allowed,
so the simple value comparison obviously fails. Many developers feel
that === is more predictable, so they advocate always using that form
and staying away from ==. I think this view is very shortsighted. I

Values & Types | 37

believe == is a powerful tool that helps your program, if you take the
time to learn how it works.

We’re not going to cover all the nitty-gritty details of how the coer‐
cion in == comparisons works here. Much of it is pretty sensible, but
there are some important corner cases to be careful of. You can read
section 11.9.3 of the ES5 specification to see the exact rules, and
you’ll be surprised at just how straightforward this mechanism is,
compared to all the negative hype surrounding it.

To boil down a whole lot of details to a few simple takeaways, and
help you know whether to use == or === in various situations, here
are my simple rules:

• If either value (aka side) in a comparison could be the true or
false value, avoid == and use ===.

• If either value in a comparison could be of these specific values
(0, "", or []—empty array), avoid == and use ===.

• In all other cases, you’re safe to use ==. Not only is it safe, but in
many cases it simplifies your code in a way that improves read‐
ability.

What these rules boil down to is requiring you to think critically
about your code and about what kinds of values can come through
variables that get compared for equality. If you can be certain about
the values, and == is safe, use it! If you can’t be certain about the val‐
ues, use ===. It’s that simple.

The != non-equality form pairs with ==, and the !== form pairs with
===. All the rules and observations we just discussed hold symmetri‐
cally for these non-equality comparisons.

You should take special note of the == and === comparison rules if
you’re comparing two non-primitive values, like objects (including
function and array). Because those values are actually held by ref‐
erence, both == and === comparisons will simply check whether the
references match, not anything about the underlying values.

For example, arrays are by default coerced to strings by simply
joining all the values with commas (,) in between. You might think
that two arrays with the same contents would be == equal, but
they’re not:

38 | Chapter 2: Into JavaScript

http://www.ecma-international.org/ecma-262/5.1/

var a = [1,2,3];
var b = [1,2,3];
var c = "1,2,3";

a == c; // true
b == c; // true
a == b; // false

For more information about the == equality
comparison rules, see the ES5 specification (sec‐
tion 11.9.3) and also consult Chapter 4 of the
Types & Grammar title of this series; see Chapter
2 for more information about values versus ref‐
erences.

Inequality

The <, >, <=, and >= operators are used for inequality, referred to in
the specification as “relational comparison.” Typically they will be
used with ordinally comparable values like numbers. It’s easy to
understand that 3 < 4.

But JavaScript string values can also be compared for inequality,
using typical alphabetic rules ("bar" < "foo").

What about coercion? Similar rules as == comparison (though not
exactly identical!) apply to the inequality operators. Notably, there
are no “strict inequality” operators that would disallow coercion the
same way === “strict equality” does.

Consider:

var a = 41;
var b = "42";
var c = "43";

a < b; // true
b < c; // true

What happens here? In section 11.8.5 of the ES5 specification, it says
that if both values in the < comparison are strings, as it is with b <
c, the comparison is made lexicographically (aka alphabetically like
a dictionary). But if one or both is not a string, as it is with a < b,
then both values are coerced to be numbers, and a typical numeric
comparison occurs.

Values & Types | 39

The biggest gotcha you may run into here with comparisons
between potentially different value types—remember, there are no
“strict inequality” forms to use—is when one of the values cannot be
made into a valid number, such as:

var a = 42;
var b = "foo";

a < b; // false
a > b; // false
a == b; // false

Wait, how can all three of those comparisons be false? Because the
b value is being coerced to the “invalid number value” NaN in the <
and > comparisons, and the specification says that NaN is neither
greater than nor less than any other value.

The == comparison fails for a different reason. a == b could fail if
it’s interpreted either as 42 == NaN or "42" == "foo"—as we
explained earlier, the former is the case.

For more information about the inequality com‐
parison rules, see section 11.8.5 of the ES5 speci‐
fication and also consult Chapter 4 of the Types
& Grammar title of this series.

Variables
In JavaScript, variable names (including function names) must be
valid identifiers. The strict and complete rules for valid characters in
identifiers are a little complex when you consider nontraditional
characters such as Unicode. If you only consider typical ASCII
alphanumeric characters, though, the rules are simple.

An identifier must start with a-z, A-Z, $, or _. It can then contain any
of those characters plus the numerals 0-9.

Generally, the same rules apply to a property name as to a variable
identifier. However, certain words cannot be used as variables, but
are OK as property names. These words are called “reserved words,”
and include the JS keywords (for, in, if, etc.) as well as null, true,
and false.

40 | Chapter 2: Into JavaScript

For more information about reserved words, see
Appendix A of the Types & Grammar title of this
series.

Function Scopes
You use the var keyword to declare a variable that will belong to the
current function scope, or the global scope if at the top level outside
of any function.

Hoisting

Wherever a var appears inside a scope, that declaration is taken to
belong to the entire scope and accessible everywhere throughout.

Metaphorically, this behavior is called hoisting, when a var declara‐
tion is conceptually “moved” to the top of its enclosing scope. Tech‐
nically, this process is more accurately explained by how code is
compiled, but we can skip over those details for now.

Consider:

var a = 2;

foo(); // works because `foo()`
 // declaration is "hoisted"

function foo() {
 a = 3;

 console.log(a); // 3

 var a; // declaration is "hoisted"
 // to the top of `foo()`
}

console.log(a); // 2

It’s not common or a good idea to rely on vari‐
able hoisting to use a variable earlier in its scope
than its var declaration appears; it can be quite
confusing. It’s much more common and
accepted to use hoisted function declarations, as
we do with the foo() call appearing before its
formal declaration.

Variables | 41

Nested scopes
When you declare a variable, it is available anywhere in that scope,
as well as any lower/inner scopes. For example:

function foo() {
 var a = 1;

 function bar() {
 var b = 2;

 function baz() {
 var c = 3;

 console.log(a, b, c); // 1 2 3
 }

 baz();
 console.log(a, b); // 1 2
 }

 bar();
 console.log(a); // 1
}

foo();

Notice that c is not available inside of bar(), because it’s declared
only inside the inner baz() scope, and that b is not available to
foo() for the same reason.

If you try to access a variable’s value in a scope where it’s not avail‐
able, you’ll get a ReferenceError thrown. If you try to set a variable
that hasn’t been declared, you’ll either end up creating a variable in
the top-level global scope (bad!) or getting an error, depending on
“strict mode” (see “Strict Mode” on page 45). Let’s take a look:

function foo() {
 a = 1; // `a` not formally declared
}

foo();
a; // 1--oops, auto global variable :(

This is a very bad practice. Don’t do it! Always formally declare your
variables.

In addition to creating declarations for variables at the function
level, ES6 lets you declare variables to belong to individual blocks
(pairs of { .. }), using the let keyword. Besides some nuanced

42 | Chapter 2: Into JavaScript

details, the scoping rules will behave roughly the same as we just saw
with functions:

function foo() {
 var a = 1;

 if (a >= 1) {
 let b = 2;

 while (b < 5) {
 let c = b * 2;
 b++;

 console.log(a + c);
 }
 }
}

foo();
// 5 7 9

Because of using let instead of var, b will belong only to the if
statement and thus not to the whole foo() function’s scope. Simi‐
larly, c belongs only to the while loop. Block scoping is very useful
for managing your variable scopes in a more fine-grained fashion,
which can make your code much easier to maintain over time.

For more information about scope, see the Scope
& Closures title of this series. See the ES6 &
Beyond title of this series for more information
about let block scoping.

Conditionals
In addition to the if statement we introduced briefly in Chapter 1,
JavaScript provides a few other conditionals mechanisms that we
should take a look at.

Sometimes you may find yourself writing a series of if..else..if
statements like this:

if (a == 2) {
 // do something
}
else if (a == 10) {
 // do another thing
}

Conditionals | 43

else if (a == 42) {
 // do yet another thing
}
else {
 // fallback to here
}

This structure works, but it’s a little verbose because you need to
specify the a test for each case. Here’s another option, the switch
statement:

switch (a) {
 case 2:
 // do something
 break;
 case 10:
 // do another thing
 break;
 case 42:
 // do yet another thing
 break;
 default:
 // fallback to here
}

The break is important if you want only the statement(s) in one
case to run. If you omit break from a case, and that case matches
or runs, execution will continue with the next case’s statements
regardless of that case matching. This so called “fall through” is
sometimes useful/desired:

switch (a) {
 case 2:
 case 10:
 // some cool stuff
 break;
 case 42:
 // other stuff
 break;
 default:
 // fallback
}

Here, if a is either 2 or 10, it will execute the “some cool stuff ” code
statements.

Another form of conditional in JavaScript is the “conditional opera‐
tor,” often called the “ternary operator.” It’s like a more concise form
of a single if..else statement, such as:

44 | Chapter 2: Into JavaScript

var a = 42;

var b = (a > 41) ? "hello" : "world";

// similar to:

// if (a > 41) {
// b = "hello";
// }
// else {
// b = "world";
// }

If the test expression (a > 41 here) evaluates as true, the first clause
("hello") results; otherwise, the second clause ("world") results,
and whatever the result is then gets assigned to b.

The conditional operator doesn’t have to be used in an assignment,
but that’s definitely the most common usage.

For more information about testing conditions
and other patterns for switch and ? :, see the
Types & Grammar title of this series.

Strict Mode
ES5 added a “strict mode” to the language, which tightens the rules
for certain behaviors. Generally, these restrictions are seen as keep‐
ing the code to a safer and more appropriate set of guidelines. Also,
adhering to strict mode makes your code generally more optimiza‐
ble by the engine. Strict mode is a big win for code, and you should
use it for all your programs.

You can opt in to strict mode for an individual function, or an entire
file, depending on where you put the strict mode pragma:

function foo() {
 "use strict";

 // this code is strict mode

 function bar() {
 // this code is strict mode
 }
}

Strict Mode | 45

// this code is not strict mode

Compare that to:

"use strict";

function foo() {
 // this code is strict mode

 function bar() {
 // this code is strict mode
 }
}

// this code is strict mode

One key difference (improvement!) with strict mode is disallowing
the implicit auto-global variable declaration from omitting the var:

function foo() {
 "use strict"; // turn on strict mode
 a = 1; // `var` missing, ReferenceError
}

foo();

If you turn on strict mode in your code, and you get errors, or code
starts behaving buggy, your temptation might be to avoid strict
mode. But that instinct would be a bad idea to indulge. If strict
mode causes issues in your program, it’s almost certainly a sign that
you have things in your program you should fix.

Not only will strict mode keep your code to a safer path, and not
only will it make your code more optimizable, but it also represents
the future direction of the language. It’d be easier on you to get used
to strict mode now than to keep putting it off—it’ll only get harder
to convert later!

For more information about strict mode, see
Chapter 5 of the Types & Grammar title of this
series.

46 | Chapter 2: Into JavaScript

Functions as Values
So far, we’ve discussed functions as the primary mechanism of scope
in JavaScript. You recall typical function declaration syntax as fol‐
lows:

function foo() {
 // ..
}

Though it may not seem obvious from that syntax, foo is basically
just a variable in the outer enclosing scope that’s given a reference to
the function being declared. That is, the function itself is a value,
just like 42 or [1,2,3] would be.

This may sound like a strange concept at first, so take a moment to
ponder it. Not only can you pass a value (argument) to a function,
but a function itself can be a value that’s assigned to variables or
passed to or returned from other functions.

As such, a function value should be thought of as an expression,
much like any other value or expression.

Consider:

var foo = function() {
 // ..
};

var x = function bar(){
 // ..
};

The first function expression assigned to the foo variable is called
anonymous because it has no name.

The second function expression is named (bar), even as a reference
to it is also assigned to the x variable. Named function expressions are
generally more preferable, though anonymous function expressions
are still extremely common.

For more information, see the Scope & Closures title of this series.

Immediately Invoked Function Expressions (IIFEs)
In the previous snippet, neither of the function expressions are exe‐
cuted—we could if we had included foo() or x(), for instance.

Functions as Values | 47

There’s another way to execute a function expression, which is typi‐
cally referred to as an immediately invoked function expression
(IIFE):

(function IIFE(){
 console.log("Hello!");
})();
// "Hello!"

The outer (..) that surrounds the (function IIFE(){ .. })
function expression is just a nuance of JS grammar needed to pre‐
vent it from being treated as a normal function declaration.

The final () on the end of the expression—the })(); line—is what
actually executes the function expression referenced immediately
before it.

That may seem strange, but it’s not as foreign as first glance. Con‐
sider the similarities between foo and IIFE here:

function foo() { .. }

// `foo` function reference expression,
// then `()` executes it
foo();

// `IIFE` function expression,
// then `()` executes it
(function IIFE(){ .. })();

As you can see, listing the (function IIFE(){ .. }) before its exe‐
cuting () is essentially the same as including foo before its execut‐
ing (); in both cases, the function reference is executed with ()
immediately after it.

Because an IIFE is just a function, and functions create variable
scope, using an IIFE in this fashion is often used to declare variables
that won’t affect the surrounding code outside the IIFE:

var a = 42;

(function IIFE(){
 var a = 10;
 console.log(a); // 10
})();

console.log(a); // 42

IIFEs can also have return values:

48 | Chapter 2: Into JavaScript

var x = (function IIFE(){
 return 42;
})();

x; // 42

The 42 value gets returned from the IIFE-named function being
executed, and is then assigned to x.

Closure
Closure is one of the most important, and often least understood,
concepts in JavaScript. I won’t cover it in deep detail here, and
instead refer you to the Scope & Closures title of this series. But I
want to say a few things about it so you understand the general con‐
cept. It will be one of the most important techniques in your JS skill‐
set.

You can think of closure as a way to “remember” and continue to
access a function’s scope (its variables) even once the function has
finished running.

Consider:

function makeAdder(x) {
 // parameter `x` is an inner variable

 // inner function `add()` uses `x`, so
 // it has a "closure" over it
 function add(y) {
 return y + x;
 };

 return add;
}

The reference to the inner add(..) function that gets returned with
each call to the outer makeAdder(..) is able to remember whatever x
value was passed in to makeAdder(..). Now, let’s use makeAd
der(..):

// `plusOne` gets a reference to the inner `add(..)`
// function with closure over the `x` parameter of
// the outer `makeAdder(..)`
var plusOne = makeAdder(1);

// `plusTen` gets a reference to the inner `add(..)`
// function with closure over the `x` parameter of
// the outer `makeAdder(..)`

Functions as Values | 49

var plusTen = makeAdder(10);

plusOne(3); // 4 <-- 1 + 3
plusOne(41); // 42 <-- 1 + 41

plusTen(13); // 23 <-- 10 + 13

More on how this code works:

1. When we call makeAdder(1), we get back a reference to its inner
add(..) that remembers x as 1. We call this function reference
plusOne(..).

2. When we call makeAdder(10), we get back another reference to
its inner add(..) that remembers x as 10. We call this function
reference plusTen(..).

3. When we call plusOne(3), it adds 3 (its inner y) to the 1
(remembered by x), and we get 4 as the result.

4. When we call plusTen(13), it adds 13 (its inner y) to the 10
(remembered by x), and we get 23 as the result.

Don’t worry if this seems strange and confusing at first—it can be!
It’ll take lots of practice to understand it fully.

But trust me, once you do, it’s one of the most powerful and useful
techniques in all of programming. It’s definitely worth the effort to
let your brain simmer on closures for a bit. In the next section, we’ll
get a little more practice with closure.

Modules
The most common usage of closure in JavaScript is the module pat‐
tern. Modules let you define private implementation details (vari‐
ables, functions) that are hidden from the outside world, as well as a
public API that is accessible from the outside.

Consider:

function User(){
 var username, password;

 function doLogin(user,pw) {
 username = user;
 password = pw;

 // do the rest of the login work
 }

50 | Chapter 2: Into JavaScript

 var publicAPI = {
 login: doLogin
 };

 return publicAPI;
}

// create a `User` module instance
var fred = User();

fred.login("fred", "12Battery34!");

The User() function serves as an outer scope that holds the vari‐
ables username and password, as well as the inner doLogin() func‐
tion; these are all private inner details of this User module that
cannot be accessed from the outside world.

We are not callling new User() here, on pur‐
pose, despite the fact that probably seems more
common to most readers. User() is just a func‐
tion, not a class to be instantiated, so it’s just
called normally. Using new would be inappropri‐
ate and actually waste resources.

Executing User() creates an instance of the User module—a whole
new scope is created, and thus a whole new copy of each of these
inner variables/functions. We assign this instance to fred. If we run
User() again, we’d get a new instance entirely separate from fred.

The inner doLogin() function has a closure over username and pass
word, meaning it will retain its access to them even after the User()
function finishes running.

publicAPI is an object with one property/method on it, login,
which is a reference to the inner doLogin() function. When we
return publicAPI from User(), it becomes the instance we call fred.

At this point, the outer User() function has finished executing. Nor‐
mally, you’d think the inner variables like username and password
have gone away. But here they have not, because there’s a closure in
the login() function keeping them alive.

Functions as Values | 51

That’s why we can call fred.login(..)—the same as calling the
inner doLogin(..)—and it can still access username and password
inner variables.

There’s a good chance that with just this brief glimpse at closure and
the module pattern, some of it is still a bit confusing. That’s OK! It
takes some work to wrap your brain around it.

From here, go read the Scope & Closures title of this series for a
much more in-depth exploration.

this Identifier
Another very commonly misunderstood concept in JavaScript is the
this keyword. Again, there’s a couple of chapters on it in the this &
Object Prototypes title of this series, so here we’ll just briefly intro‐
duce the concept.

While it may often seem that this is related to “object-oriented pat‐
terns,” in JS this is a different mechanism.

If a function has a this reference inside it, that this reference usu‐
ally points to an object. But which object it points to depends on
how the function was called.

It’s important to realize that this does not refer to the function itself,
as is the most common misconception.

Here’s a quick illustration:

function foo() {
 console.log(this.bar);
}

var bar = "global";

var obj1 = {
 bar: "obj1",
 foo: foo
};

var obj2 = {
 bar: "obj2"
};

// --------

foo(); // "global"

52 | Chapter 2: Into JavaScript

obj1.foo(); // "obj1"
foo.call(obj2); // "obj2"
new foo(); // undefined

There are four rules for how this gets set, and they’re shown in
those last four lines of that snippet:

1. foo() ends up setting this to the global object in non-strict
mode—in strict mode, this would be undefined and you’d get
an error in accessing the bar property—so "global" is the value
found for this.bar.

2. obj1.foo() sets this to the obj1 object.
3. foo.call(obj2) sets this to the obj2 object.
4. new foo() sets this to a brand new empty object.

Bottom line: to understand what this points to, you have to exam‐
ine how the function in question was called. It will be one of those
four ways just shown, and that will then answer what this is.

For more information about this, see Chapters
1 and 2 of the this & Object Prototypes title of
this series.

Prototypes
The prototype mechanism in JavaScript is quite complicated. We
will only glance at it here. You will want to spend plenty of time
reviewing Chapters 4-6 of the this & Object Prototypes title of this
series for all the details.

When you reference a property on an object, if that property doesn’t
exist, JavaScript will automatically use that object’s internal proto‐
type reference to find another object to look for the property on.
You could think of this almost as a fallback if the property is miss‐
ing.

The internal prototype reference linkage from one object to its fall‐
back happens at the time the object is created. The simplest way to
illustrate it is with a built-in utility called Object.create(..).

Prototypes | 53

Consider:

var foo = {
 a: 42
};

// create `bar` and link it to `foo`
var bar = Object.create(foo);

bar.b = "hello world";

bar.b; // "hello world"
bar.a; // 42 <-- delegated to `foo`

It may help to visualize the foo and bar objects and their relation‐
ship:

The a property doesn’t actually exist on the bar object, but because
bar is prototype-linked to foo, JavaScript automatically falls back to
looking for a on the foo object, where it’s found.

This linkage may seem like a strange feature of the language. The
most common way this feature is used—and I would argue, abused
—is to try to emulate/fake a “class” mechanism with “inheritance.”

But a more natural way of applying prototypes is a pattern called
“behavior delegation,” where you intentionally design your linked
objects to be able to delegate from one to the other for parts of the
needed behavior.

For more information about prototypes and
behavior delegation, see Chapters 4-6 of the this
& Object Prototypes title of this series.

54 | Chapter 2: Into JavaScript

Old & New
Some of the JS features we’ve already covered, and certainly many of
the features covered in the rest of this series, are newer additions
and will not necessarily be available in older browsers. In fact, some
of the newest features in the specification aren’t even implemented
in any stable browsers yet.

So, what do you do with the new stuff? Do you just have to wait
around for years or decades for all the old browsers to fade into
obscurity?

That’s how many people think about the situation, but it’s really not
a healthy approach to JS.

There are two main techniques you can use to “bring” the newer
JavaScript stuff to the older browsers: polyfilling and transpiling.

Polyfilling
The word “polyfill” is an invented term (by Remy Sharp) used to
refer to taking the definition of a newer feature and producing a
piece of code that’s equivalent to the behavior, but is able to run in
older JS environments.

For example, ES6 defines a utility called Number.isNaN(..) to pro‐
vide an accurate, non-buggy check for NaN values, deprecating the
original isNaN(..) utility. But it’s easy to polyfill that utility so that
you can start using it in your code regardless of whether the end
user is in an ES6 browser or not.

Consider:

if (!Number.isNaN) {
 Number.isNaN = function isNaN(x) {
 return x !== x;
 };
}

The if statement guards against applying the polyfill definition in
ES6 browsers where it will already exist. If it’s not already present,
we define Number.isNaN(..).

Old & New | 55

https://remysharp.com/2010/10/08/what-is-a-polyfill

The check we do here takes advantage of a quirk
with NaN values, which is that they’re the only
value in the whole language that is not equal to
itself. So the NaN value is the only one that would
make x !== x be true.

Not all new features are fully polyfillable. Sometimes most of the
behavior can be polyfilled, but there are still small deviations. You
should be really, really careful in implementing a polyfill yourself, to
make sure you are adhering to the specification as strictly as possi‐
ble.

Or better yet, use an already vetted set of polyfills that you can trust,
such as those provided by ES5-Shim and ES6-Shim.

Transpiling
There’s no way to polyfill new syntax that has been added to the lan‐
guage. The new syntax would throw an error in the old JS engine as
unrecognized/invalid.

So the better option is to use a tool that converts your newer code
into older code equivalents. This process is commonly called “tran‐
spiling,” a term for transforming + compiling.

Essentially, your source code is authored in the new syntax form, but
what you deploy to the browser is the transpiled code in old syntax
form. You typically insert the transpiler into your build process,
similar to your code linter or your minifier.

You might wonder why you’d go to the trouble to write new syntax
only to have it transpiled away to older code—why not just write the
older code directly?

There are several important reasons you should care about transpi‐
ling:

• The new syntax added to the language is designed to make your
code more readable and maintainable. The older equivalents are
often much more convoluted. You should prefer writing newer
and cleaner syntax, not only for yourself but for all other mem‐
bers of the development team.

• If you transpile only for older browsers, but serve the new syn‐
tax to the newest browsers, you get to take advantage of browser

56 | Chapter 2: Into JavaScript

https://github.com/es-shims/es5-shim
https://github.com/es-shims/es6-shim

performance optimizations with the new syntax. This also lets
browser makers have more real-world code to test their imple‐
mentations and optimizations on.

• Using the new syntax earlier allows it to be tested more robustly
in the real world, which provides earlier feedback to the Java‐
Script committee (TC39). If issues are found early enough, they
can be changed/fixed before those language design mistakes
become permanent.

Here’s a quick example of transpiling. ES6 adds a feature called
“default parameter values.” It looks like this:

function foo(a = 2) {
 console.log(a);
}

foo(); // 2
foo(42); // 42

Simple, right? Helpful, too! But it’s new syntax that’s invalid in pre-
ES6 engines. So what will a transpiler do with that code to make it
run in older environments?

function foo() {
 var a = arguments[0] !== (void 0) ? arguments[0] : 2;
 console.log(a);
}

As you can see, it checks to see if the arguments[0] value is void 0
(aka undefined), and if so provides the 2 default value; otherwise, it
assigns whatever was passed.

In addition to being able to now use the nicer syntax even in older
browsers, looking at the transpiled code actually explains the
intended behavior more clearly.

You may not have realized just from looking at the ES6 version that
undefined is the only value that can’t get explicitly passed in for a
default-value parameter, but the transpiled code makes that much
more clear.

The last important detail to emphasize about transpilers is that they
should now be thought of as a standard part of the JS development
ecosystem and process. JS is going to continue to evolve, much more
quickly than before, so every few months new syntax and new fea‐
tures will be added.

Old & New | 57

If you use a transpiler by default, you’ll always be able to make that
switch to newer syntax whenever you find it useful, rather than
always waiting for years for today’s browsers to phase out.

There are quite a few great transpilers for you to choose from. Here
are some good options at the time of this writing:

Babel (formerly 6to5)
Transpiles ES6+ into ES5

Traceur
Transpiles ES6, ES7, and beyond into ES5

Non-JavaScript
So far, the only things we’ve covered are in the JS language itself. The
reality is that most JS is written to run in and interact with environ‐
ments like browsers. A good chunk of the stuff that you write in
your code is, strictly speaking, not directly controlled by JavaScript.
That probably sounds a little strange.

The most common non-JavaScript JavaScript you’ll encounter is the
DOM API. For example:

var el = document.getElementByID("foo");

The document variable exists as a global variable when your code is
running in a browser. It’s not provided by the JS engine, nor is it
particularly controlled by the JavaScript specification. It takes the
form of something that looks an awful lot like a normal JS object,
but it’s not really exactly that. It’s a special object, often called a
“host object.”

Moreover, the getElementByID(..) method on document looks like
a normal JS function, but it’s just a thinly exposed interface to a
built-in method provided by the DOM from your browser. In some
(newer-generation) browsers, this layer may also be in JS, but tradi‐
tionally the DOM and its behavior is implemented in something
more like C/C++.

Another example is with input/output (I/O).

Everyone’s favorite alert(..) pops up a message box in the user’s
browser window. alert(..) is provided to your JS program by the
browser, not by the JS engine itself. The call you make sends the

58 | Chapter 2: Into JavaScript

https://babeljs.io
https://github.com/google/traceur-compiler

message to the browser internals and it handles drawing and dis‐
playing the message box.

The same goes with console.log(..); your browser provides such
mechanisms and hooks them up to the developer tools.

This book, and this whole series, focuses on JavaScript the language.
That’s why you don’t see any substantial coverage of these non-
JavaScript JavaScript mechanisms. Nevertheless, you need to be
aware of them, as they’ll be in every JS program you write!

Review
The first step to learning JavaScript’s flavor of programming is to get
a basic understanding of its core mechanisms like values, types,
function closures, this, and prototypes.

Of course, each of these topics deserves much greater coverage than
you’ve seen here, but that’s why they have chapters and books dedi‐
cated to them throughout the rest of this series. After you feel pretty
comfortable with the concepts and code samples in this chapter, the
rest of the series awaits you to really dig in and get to know the lan‐
guage deeply.

The final chapter of this book will briefly summarize each of the
other titles in the series and the other concepts they cover besides
what we’ve already explored.

Review | 59

CHAPTER 3

Into YDKJS

What is this series all about? Put simply, it’s about taking seriously
the task of learning all parts of JavaScript, not just some subset of the
language that someone called “the good parts,” and not just what‐
ever minimal amount you need to get your job done at work.

Serious developers in other languages expect to put in the effort to
learn most or all of the language(s) they primarily write in, but JS
developers seem to stand out from the crowd in the sense of typi‐
cally not learning very much of the language. This is not a good
thing, and it’s not something we should continue to allow to be the
norm.

The You Don’t Know JS (YDKJS) series stands in stark contrast to the
typical approaches to learning JS, and is unlike almost any other JS
books you will read. It challenges you to go beyond your comfort
zone and to ask the deeper “why” questions for every single behav‐
ior you encounter. Are you up for that challenge?

I’m going to use this final chapter to briefly summarize what to
expect from the rest of the books in the series, and how to most
effectively go about building a foundation of JS learning on top of
YDKJS.

Scope & Closures
Perhaps one of the most fundamental things you’ll need to quickly
come to terms with is how scoping of variables really works in Java‐
Script. It’s not enough to have anecdotal fuzzy beliefs about scope.

61

The Scope & Closures title starts by debunking the common miscon‐
ception that JS is an “interpreted language” and therefore not com‐
piled. Nope.

The JS engine compiles your code right before (and sometimes dur‐
ing!) execution. So we use some deeper understanding of the com‐
piler’s approach to our code to understand how it finds and deals
with variable and function declarations. Along the way, we see the
typical metaphor for JS variable scope management, “hoisting.”

This critical understanding of “lexical scope” is what we then base
our exploration of closure on for the last chapter of the book. Clo‐
sure is perhaps the single most important concept in all of JS, but if
you haven’t first grasped firmly how scope works, closure will likely
remain beyond your grasp.

One important application of closure is the module pattern, as we
briefly introduced in this book in Chapter 2. The module pattern is
perhaps the most prevalent code organization pattern in all of Java‐
Script; deep understanding of it should be one of your highest prior‐
ities.

this & Object Prototypes
Perhaps one of the most widespread and persistent mistruths about
JavaScript is that the this keyword refers to the function it appears
in. Terribly mistaken.

The this keyword is dynamically bound based on how the function
in question is executed, and it turns out there are four simple rules
to understand and fully determine this binding.

Closely related to the this keyword is the object prototype mecha‐
nism, which is a look-up chain for properties, similar to how lexical
scope variables are found. But wrapped up in the prototypes is the
other huge miscue about JS: the idea of emulating (fake) classes and
(so-called “prototypal”) inheritance.

Unfortunately, the desire to bring class and inheritance design pat‐
tern thinking to JavaScript is just about the worst thing you could
try to do, because while the syntax may trick you into thinking
there’s something like classes present, in fact the prototype mecha‐
nism is fundamentally opposite in its behavior.

62 | Chapter 3: Into YDKJS

What’s at issue is whether it’s better to ignore the mismatch and pre‐
tend that what you’re implementing is “inheritance,” or whether it’s
more appropriate to learn and embrace how the object prototype
system actually works. The latter is more appropriately named
“behavior delegation.”

This is more than syntactic preference. Delegation is an entirely dif‐
ferent, and more powerful, design pattern, one that replaces the
need to design with classes and inheritance. But these assertions will
absolutely fly in the face of nearly every other blog post, book, and
conference talk on the subject for the entirety of JavaScript’s lifetime.

The claims I make regarding delegation versus inheritance come not
from a dislike of the language and its syntax, but from the desire to
see the true capability of the language properly leveraged and the
endless confusion and frustration wiped away.

But the case I make regarding prototypes and delegation is a much
more involved one than what I will indulge here. If you’re ready to
reconsider everything you think you know about JavaScript “classes”
and “inheritance,” I offer you the chance to “take the red pill” (The
Matrix, 1999) and check out Chapters 4-6 of the this & Object Proto‐
types title of this series.

Types & Grammar
The third title in this series primarily focuses on tackling yet another
highly controversial topic: type coercion. Perhaps no topic causes
more frustration with JS developers than when you talk about the
confusions surrounding implicit coercion.

By far, the conventional wisdom is that implicit coercion is a “bad
part” of the language and should be avoided at all costs. In fact,
some have gone so far as to call it a “flaw” in the design of the lan‐
guage. Indeed, there are tools whose entire job is to do nothing but
scan your code and complain if you’re doing anything even remotely
like coercion.

But is coercion really so confusing, so bad, so treacherous, that your
code is doomed from the start if you use it?

I say no. After having built up an understanding of how types and
values really work in Chapters 1-3, Chapter 4 takes on this debate
and fully explains how coercion works, in all its nooks and crevices.

Types & Grammar | 63

We see just what parts of coercion really are surprising and what
parts actually make complete sense if given the time to learn.

But I’m not merely suggesting that coercion is sensible and learna‐
ble; I’m asserting that coercion is an incredibly useful and totally
underestimated tool that you should be using in your code. I’m saying
that coercion, when used properly, not only works, but makes your
code better. All the naysayers and doubters will surely scoff at such a
position, but I believe it’s one of the main keys to upping your JS
game.

Do you want to just keep following what the crowd says, or are you
willing to set all the assumptions aside and look at coercion with a
fresh perspective? The Types & Grammar title of this series will
coerce your thinking.

Async & Performance
The first three titles of this series focus on the core mechanics of the
language, but the fourth title branches out slightly to cover patterns
on top of the language mechanics for managing asynchronous pro‐
gramming. Asynchrony is not only critical to the performance of
our applications, it’s increasingly becoming the critical factor in
writability and maintainability.

The book starts first by clearing up a lot of terminology and concept
confusion around things like “async,” “parallel,” and “concurrent,”
and explains in depth how such things do and do not apply to JS.

Then we move into examining callbacks as the primary method of
enabling asynchrony. But it’s here that we quickly see that the call‐
back alone is hopelessly insufficient for the modern demands of
asynchronous programming. We identify two major deficiencies of
callbacks-only coding: Inversion of Control (IoC) trust loss and lack
of linear reason-ability.

To address these two major deficiencies, ES6 introduces two new
mechanisms (and indeed, patterns): promises and generators.

Promises are a time-independent wrapper around a “future value,”
which lets you reason about and compose them regardless of if the
value is ready or not yet. Moreover, they effectively solve the IoC
trust issues by routing callbacks through a trustable and composable
promise mechanism.

64 | Chapter 3: Into YDKJS

Generators introduce a new mode of execution for JS functions,
whereby the generator can be paused at yield points and be
resumed asynchronously later. The pause-and-resume capability
enables synchronous, sequential-looking code in the generator to be
processed asynchronously behind the scenes. By doing so, we
address the non-linear, non-local-jump confusions of callbacks and
thereby make our asynchronous code sync-looking so as to be more
reason-able.

But it’s the combination of promises and generators that “yields” our
most effective asynchronous coding pattern to date in JavaScript. In
fact, much of the future sophistication of asynchrony coming in ES7
and later will certainly be built on this foundation. To be serious
about programming effectively in an async world, you’re going to
need to get really comfortable with combining promises and genera‐
tors.

If promises and generators are about expressing patterns that let our
programs run more concurrently and thus get more processing
accomplished in a shorter period, JS has many other facets of perfor‐
mance optimization worth exploring.

Chapter 5 delves into topics like program parallelism with Web
Workers and data parallelism with SIMD, as well as low-level opti‐
mization techniques like ASM.js. Chapter 6 takes a look at perfor‐
mance optimization from the perspective of proper benchmarking
techniques, including what kinds of performance to worry about
and what to ignore.

Writing JavaScript effectively means writing code that can break the
constraint barriers of being run dynamically in a wide range of
browsers and other environments. It requires a lot of intricate and
detailed planning and effort on our parts to take a program from “it
works” to “it works well.”

The Async & Performance title is designed to give you all the tools
and skills you need to write reasonable and performant JavaScript
code.

ES6 & Beyond
No matter how much you feel you’ve mastered JavaScript to this
point, the truth is that JavaScript is never going to stop evolving, and
moreover, the rate of evolution is increasing rapidly. This fact is

ES6 & Beyond | 65

almost a metaphor for the spirit of this series, to embrace that we’ll
never fully know every part of JS, because as soon as you master it
all, there’s going to be new stuff coming down the line that you’ll
need to learn.

This title is dedicated to both the short- and mid-term visions of
where the language is headed, not just the known stuff like ES6 but
the likely stuff beyond.

While all the titles of this series embrace the state of JavaScript at the
time of this writing, which is midway through ES6 adoption, the pri‐
mary focus in the series has been more on ES5. Now, we want to
turn our attention to ES6, ES7, and beyond…

Since ES6 is nearly complete at the time of this writing, ES6 &
Beyond starts by dividing up the concrete stuff from the ES6 land‐
scape into several key categories, including new syntax, new data
structures (collections), and new processing capabilities and APIs.
We cover each of these new ES6 features, in varying levels of detail,
including reviewing details that are touched on in other books of
this series.

Some exciting ES6 things to look forward to reading about: destruc‐
turing, default parameter values, symbols, concise methods, compu‐
ted properties, arrow functions, block scoping, promises, generators,
iterators, modules, proxies, weakmaps, and much, much more!
Phew, ES6 packs quite a punch!

The first part of the book is a roadmap for all the stuff you need to
learn to get ready for the new and improved JavaScript you’ll be
writing and exploring over the next couple of years.

The latter part of the book turns attention to briefly glance at things
that we can likely expect to see in the near future of JavaScript. The
most important realization here is that post-ES6, JS is likely going to
evolve feature by feature rather than version by version, which
means we can expect to see these near-future things coming much
sooner than you might imagine.

The future for JavaScript is bright. Isn’t it time we start learning it?

66 | Chapter 3: Into YDKJS

Review
The YDKJS series is dedicated to the proposition that all JS develop‐
ers can and should learn all of the parts of this great language. No
person’s opinion, no framework’s assumptions, and no project’s
deadline should be the excuse for why you never learn and deeply
understand JavaScript.

We take each important area of focus in the language and dedicate a
short but very dense book to fully explore all the parts of it that you
perhaps thought you knew but probably didn’t fully.

“You Don’t Know JS” isn’t a criticism or an insult. It’s a realization
that all of us, myself included, must come to terms with. Learning
JavaScript isn’t an end goal but a process. We don’t know JavaScript,
yet. But we will!

Review | 67

APPENDIX A

Acknowledgments

I have many people to thank for making this book title and the over‐
all series happen.

First, I must thank my wife Christen Simpson, and my two kids
Ethan and Emily, for putting up with Dad always pecking away at
the computer. Even when not writing books, my obsession with
JavaScript glues my eyes to the screen far more than it should. That
time I borrow from my family is the reason these books can so
deeply and completely explain JavaScript to you, the reader. I owe
my family everything.

I’d like to thank my editors at O’Reilly, namely Simon St.Laurent and
Brian MacDonald, as well as the rest of the editorial and marketing
staff. They are fantastic to work with, and have been especially
accommodating during this experiment into “open source” book
writing, editing, and production.

Thank you to the many folks who have participated in making this
series better by providing editorial suggestions and corrections,
including Shelley Powers, Tim Ferro, Evan Borden, Forrest L. Nor‐
vell, Jennifer Davis, Jesse Harlin, Kris Kowal, Rick Waldron, Jordan
Harband, Benjamin Gruenbaum, Vyacheslav Egorov, David Nolen,
and many others. A big thank you to Jenn Lukas for writing the
foreword for this title.

Thank you to the countless folks in the community, including mem‐
bers of the TC39 committee, who have shared so much knowledge
with the rest of us, and especially tolerated my incessant questions

69

and explorations with patience and detail. John-David Dalton, Juriy
“kangax” Zaytsev, Mathias Bynens, Axel Rauschmayer, Nicholas
Zakas, Angus Croll, Reginald Braithwaite, Dave Herman, Brendan
Eich, Allen Wirfs-Brock, Bradley Meck, Domenic Denicola, David
Walsh, Tim Disney, Peter van der Zee, Andrea Giammarchi, Kit
Cambridge, Eric Elliott, and so many others, I can’t even scratch the
surface.

Since the You Don’t Know JS series was born on Kickstarter, I also
wish to thank all my (nearly) 500 generous backers, without whom
this series could not have happened:

Jan Szpila, nokiko, Murali Krishnamoorthy, Ryan Joy, Craig Patch‐
ett, pdqtrader, Dale Fukami, ray hatfield, R0drigo Perez [Mx], Dan
Petitt, Jack Franklin, Andrew Berry, Brian Grinstead, Rob Suther‐
land, Sergi Meseguer, Phillip Gourley, Mark Watson, Jeff Carouth,
Alfredo Sumaran, Martin Sachse, Marcio Barrios, Dan, Aimely‐
neM, Matt Sullivan, Delnatte Pierre-Antoine, Jake Smith, Eugen
Tudorancea, Iris, David Trinh, simonstl, Ray Daly, Uros Gruber,
Justin Myers, Shai Zonis, Mom & Dad, Devin Clark, Dennis
Palmer, Brian Panahi Johnson, Josh Marshall, Marshall, Dennis
Kerr, Matt Steele, Erik Slagter, Sacah, Justin Rainbow, Christian
Nilsson, Delapouite, D.Pereira, Nicolas Hoizey, George V. Reilly,
Dan Reeves, Bruno Laturner, Chad Jennings, Shane King, Jeremiah
Lee Cohick, od3n, Stan Yamane, Marko Vucinic, Jim B, Stephen
Collins, Ægir Þorsteinsson, Eric Pederson, Owain, Nathan Smith,
Jeanetteurphy, Alexandre ELISÉ, Chris Peterson, Rik Watson, Luke
Matthews, Justin Lowery, Morten Nielsen, Vernon Kesner, Chetan
Shenoy, Paul Tregoing, Marc Grabanski, Dion Almaer, Andrew Sul‐
livan, Keith Elsass, Tom Burke, Brian Ashenfelter, David Stuart,
Karl Swedberg, Graeme, Brandon Hays, John Christopher, Gior,
manoj reddy, Chad Smith, Jared Harbour, Minoru TODA, Chris
Wigley, Daniel Mee, Mike, Handyface, Alex Jahraus, Carl Furrow,
Rob Foulkrod, Max Shishkin, Leigh Penny Jr., Robert Ferguson,
Mike van Hoenselaar, Hasse Schougaard, rajan venkataguru, Jeff
Adams, Trae Robbins, Rolf Langenhuijzen, Jorge Antunes, Alex
Koloskov, Hugh Greenish, Tim Jones, Jose Ochoa, Michael
Brennan-White, Naga Harish Muvva, Barkóczi Dávid, Kitt Hods‐
den, Paul McGraw, Sascha Goldhofer, Andrew Metcalf, Markus
Krogh, Michael Mathews, Matt Jared, Juanfran, Georgie Kirschner,
Kenny Lee, Ted Zhang, Amit Pahwa, Inbal Sinai, Dan Raine,
Schabse Laks, Michael Tervoort, Alexandre Abreu, Alan Joseph
Williams, NicolasD, Cindy Wong, Reg Braithwaite, LocalPCGuy,
Jon Friskics, Chris Merriman, John Pena, Jacob Katz, Sue Lock‐
wood, Magnus Johansson, Jeremy Crapsey, Grzegorz Pawłowski,
nico nuzzaci, Christine Wilks, Hans Bergren, charles montgomery,

70 | Appendix A: Acknowledgments

Ariel לבב-בר Fogel, Ivan Kolev, Daniel Campos, Hugh Wood,
Christian Bradford, Frédéric Harper, Ionuţ Dan Popa, Jeff Trimble,
Rupert Wood, Trey Carrico, Pancho Lopez, Joël kuijten, Tom A
Marra, Jeff Jewiss, Jacob Rios, Paolo Di Stefano, Soledad Penades,
Chris Gerber, Andrey Dolganov, Wil Moore III, Thomas Marti‐
neau, Kareem, Ben Thouret, Udi Nir, Morgan Laupies, jory carson-
burson, Nathan L Smith, Eric Damon Walters, Derry Lozano-
Hoyland, Geoffrey Wiseman, mkeehner, KatieK, Scott MacFarlane,
Brian LaShomb, Adrien Mas, christopher ross, Ian Littman, Dan
Atkinson, Elliot Jobe, Nick Dozier, Peter Wooley, John Hoover, dan,
Martin A. Jackson, Héctor Fernando Hurtado, andy ennamorato,
Paul Seltmann, Melissa Gore, Dave Pollard, Jack Smith, Philip Da
Silva, Guy Israeli, @megalithic, Damian Crawford, Felix Gliesche,
April Carter Grant, Heidi, jim tierney, Andrea Giammarchi, Nico
Vignola, Don Jones, Chris Hartjes, Alex Howes, john gibbon, David
J. Groom, BBox, Yu Dilys Sun, Nate Steiner, Brandon Satrom, Brian
Wyant, Wesley Hales, Ian Pouncey, Timothy Kevin Oxley, George
Terezakis, sanjay raj, Jordan Harband, Marko McLion, Wolfgang
Kaufmann, Pascal Peuckert, Dave Nugent, Markus Liebelt, Welling
Guzman, Nick Cooley, Daniel Mesquita, Robert Syvarth, Chris
Coyier, Rémy Bach, Adam Dougal, Alistair Duggin, David Loidolt,
Ed Richer, Brian Chenault, GoldFire Studios, Carles Andrés, Carlos
Cabo, Yuya Saito, roberto ricardo, Barnett Klane, Mike Moore,
Kevin Marx, Justin Love, Joe Taylor, Paul Dijou, Michael Kohler,
Rob Cassie, Mike Tierney, Cody Leroy Lindley, tofuji, Shimon
Schwartz, Raymond, Luc De Brouwer, David Hayes, Rhys Brett-
Bowen, Dmitry, Aziz Khoury, Dean, Scott Tolinski - Level Up,
Clement Boirie, Djordje Lukic, Anton Kotenko, Rafael Corral, Phi‐
lip Hurwitz, Jonathan Pidgeon, Jason Campbell, Joseph C., Swif‐
tOne, Jan Hohner, Derick Bailey, getify, Daniel Cousineau, Chris
Charlton, Eric Turner, David Turner, Joël Galeran, Dharma Vaga‐
bond, adam, Dirk van Bergen, dave ♥♫★ furf, Vedran Zakanj,
Ryan McAllen, Natalie Patrice Tucker, Eric J. Bivona, Adam Spoo‐
ner, Aaron Cavano, Kelly Packer, Eric J, Martin Drenovac, Emilis,
Michael Pelikan, Scott F. Walter, Josh Freeman, Brandon Hudgeons,
vijay chennupati, Bill Glennon, Robin R., Troy Forster,
otaku_coder, Brad, Scott, Frederick Ostrander, Adam Brill, Seb
Flippence, Michael Anderson, Jacob, Adam Randlett, Standard,
Joshua Clanton, Sebastian Kouba, Chris Deck, SwordFire, Hannes
Papenberg, Richard Woeber, hnzz, Rob Crowther, Jedidiah Broad‐
bent, Sergey Chernyshev, Jay-Ar Jamon, Ben Combee, luciano
bonachela, Mark Tomlinson, Kit Cambridge, Michael Melgares,
Jacob Adams, Adrian Bruinhout, Bev Wieber, Scott Puleo, Thomas
Herzog, April Leone, Daniel Mizieliński, Kees van Ginkel, Jon
Abrams, Erwin Heiser, Avi Laviad, David newell, Jean-Francois
Turcot, Niko Roberts, Erik Dana, Charles Neill, Aaron Holmes,
Grzegorz Ziółkowski, Nathan Youngman, Timothy, Jacob Mather,

Acknowledgments | 71

Michael Allan, Mohit Seth, Ryan Ewing, Benjamin Van Treese,
Marcelo Santos, Denis Wolf, Phil Keys, Chris Yung, Timo Tijhof,
Martin Lekvall, Agendine, Greg Whitworth, Helen Humphrey,
Dougal Campbell, Johannes Harth, Bruno Girin, Brian Hough,
Darren Newton, Craig McPheat, Olivier Tille, Dennis Roethig,
Mathias Bynens, Brendan Stromberger, sundeep, John Meyer, Ron
Male, John F Croston III, gigante, Carl Bergenhem, B.J. May, Rebe‐
kah Tyler, Ted Foxberry, Jordan Reese, Terry Suitor, afeliz, Tom
Kiefer, Darragh Duffy, Kevin Vanderbeken, Andy Pearson, Simon
Mac Donald, Abid Din, Chris Joel, Tomas Theunissen, David Dick,
Paul Grock, Brandon Wood, John Weis, dgrebb, Nick Jenkins,
Chuck Lane, Johnny Megahan, marzsman, Tatu Tamminen, Geof‐
frey Knauth, Alexander Tarmolov, Jeremy Tymes, Chad Auld, Sean
Parmelee, Rob Staenke, Dan Bender, Yannick derwa, Joshua Jones,
Geert Plaisier, Tom LeZotte, Christen Simpson, Stefan Bruvik, Jus‐
tin Falcone, Carlos Santana, Michael Weiss, Pablo Villoslada, Peter
deHaan, Dimitris Iliopoulos, seyDoggy, Adam Jordens, Noah Kant‐
rowitz, Amol M, Matthew Winnard, Dirk Ginader, Phinam Bui,
David Rapson, Andrew Baxter, Florian Bougel, Michael George,
Alban Escalier, Daniel Sellers, Sasha Rudan, John Green, Robert
Kowalski, David I. Teixeira (@ditma), Charles Carpenter, Justin
Yost, Sam S, Denis Ciccale, Kevin Sheurs, Yannick Croissant, Pau
Fracés, Stephen McGowan, Shawn Searcy, Chris Ruppel, Kevin
Lamping, Jessica Campbell, Christopher Schmitt, Sablons, Jonathan
Reisdorf, Bunni Gek, Teddy Huff, Michael Mullany, Michael Für‐
stenberg, Carl Henderson, Rick Yoesting, Scott Nichols, Hernán
Ciudad, Andrew Maier, Mike Stapp, Jesse Shawl, Sérgio Lopes, jsu‐
lak, Shawn Price, Joel Clermont, Chris Ridmann, Sean Timm, Jason
Finch, Aiden Montgomery, Elijah Manor, Derek Gathright, Jesse
Harlin, Dillon Curry, Courtney Myers, Diego Cadenas, Arne de
Bree, João Paulo Dubas, James Taylor, Philipp Kraeutli, Mihai Păun,
Sam Gharegozlou, joshjs, Matt Murchison, Eric Windham, Timo
Behrmann, Andrew Hall, joshua price, Théophile Villard

This series is being produced in an open source fashion, including
editing and production. We owe GitHub a debt of gratitude for
making that sort of thing possible for the community!

Thank you again to all the countless folks I didn’t name but who I
nonetheless owe thanks. May this series be “owned” by all of us and
serve to contribute to increasing awareness and understanding of
the JavaScript language, to the benefit of all current and future com‐
munity contributors.

72 | Appendix A: Acknowledgments

About the Author
Kyle Simpson is an Open Web Evangelist from Austin, TX, who’s
passionate about all things JavaScript. He’s an author, workshop
trainer, tech speaker, and OSS contributor/leader.

Colophon
The cover font for Up & Going is Interstate. The text font is Adobe
Minion Pro; the heading font is Adobe Myriad Condensed; and the
code font is Dalton Maag’s Ubuntu Mono.

	Table of Contents
	Foreword
	Preface
	Mission
	Review
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us

	Chapter 1. Into Programming
	Code
	Statements

	Expressions
	Executing a Program

	Try It Yourself
	Output
	Input

	Operators
	Values & Types
	Converting Between Types

	Code Comments
	Variables
	Blocks
	Conditionals
	Loops
	Functions
	Scope

	Practice
	Review

	Chapter 2. Into JavaScript
	Values & Types
	Objects
	Built-In Type Methods
	Comparing Values

	Variables
	Function Scopes

	Conditionals
	Strict Mode
	Functions as Values
	Immediately Invoked Function Expressions (IIFEs)
	Closure

	this Identifier
	Prototypes
	Old & New
	Polyfilling
	Transpiling

	Non-JavaScript
	Review

	Chapter 3. Into YDKJS
	Scope & Closures
	this & Object Prototypes
	Types & Grammar
	Async & Performance
	ES6 & Beyond
	Review

	Appendix A. Acknowledgments
	About the Author

